THE KREBS CYCLE

- The Krebs cycle, the citric acid cycle or Tri-Carboxylic Acid cycle (TCA).
- It is aerobic catabolic pathway seen in aerobic cellular respiration.
- Pyruvate is further metabolized in this process.
- Pyruvate is oxidized to reduce NAD+ and modified with coenzyme A to produce Acetyl-CoA complex.

Figure 3.12 Microbiology: A Clinical Approach (© Garland Science)

THE KREBS CYCLE

- The Krebs cycle is a series of reactions in which chemical changes occur.
 - Within these reactions, hydrogen atoms are removed and their electrons are transferred to coenzyme carrier molecules.
 - The hydrogen atoms are carried by NAD⁺ and FAD to the electron transport system.

- Three important things happen in the Krebs cycle:
- Carbon is oxidized as CO₂.
- Energy is stored when ADP is converted to ATP.
- Electrons are transferred to coenzyme carrier molecules that malate corrier take the electrons to the electron transport chain.

Oxidation of Pyruvate

- The two molecules of pyruvate are oxidized and transformed into molecules of acetyl CoA.
- Takes place in mitochondria
- Also produces one molecule of NADH

Kreb Cycle

- Takes place in matrix of the mitochondria
- Processes each acetyl CoA to produce 3 NADH, 1 FADH₂, and 1 ATP for a total of 6 NADH, 2 FADH₂, 2 ATP per glucose.
- Carbon dioxide is also released in this reaction.

Oxidative Phosphorylation

- After the Kreb Cycle, large amount of ATP produced from NADH (produces 3 ATP) and FADH₂ (produces 2 ATP)
- Requires the presence of oxygen in the mitochondria

ELECTRON TRANSPORT CHAIN

- The electron transport chain is a sequence of molecules.
 - In eukaryotes, they are found in the inner mitochondrial membrane.
 - In prokaryotes, they are organized in the plasma membrane.
- Is series of molecules embedded in the inner membrane of the mitochondria
- The 10 NADH and 2 FADH₂ (Produced from previous stages) power the production of the final 32 ATP

ELECTRON TRANSPORT CHAIN

- Electrons are transferred to a final electron acceptor.
 - In aerobic respiration, the final acceptor is oxygen.
 - In anaerobic respiration, the final acceptor is an inorganic molecule.

Figure 3.13 Microbiology: A Clinical Approach (© Garland Science)

CHEMIOSMOSIS

- As electrons move from one molecule to another in the chain, energy is released via a process called chemiosmosis.
- As electrons are transferred along the electron transport chain, protons are pumped out of the cell.
- This causes the proton concentration outside the cell to be higher than inside the cell, causing a concentration gradient to form.

Figure 3.13 Microbiology: A Clinical Approach (© Garland Science)

CHEMIOSMOSIS

- Specialized membrane proteins allow protons to re-enter the cell.
 - Energy is released as protons re-enter the cell.
 - This energy is used to bind phosphate to ADP, making the highenergy molecule ATP.
 - The difference in proton concentration in this process is called the proton motive force.

Figure 3.13 Microbiology: A Clinical Approach (© Garland Science)

Using Electrons to Make ATP

- NADH & FADH₂ contain energized electrons.
- NADH molecules carry their electrons to the inner mitochondrial membrane where they transfer electrons to a series of membrane bound proteins – the electron transport chain.

Continue...

 By pumping H+ into the intermembrane space, the electron transport chain sets up a high concentration gradient. H+ flows down gradient through the ATP synthase, a membrane protein that catalyzes the production of ATP from ADP.

CHEMIOSMOSIS

- Cells using anaerobic respiration generate two molecules of ATP from one glucose molecule.
- Cell using aerobic respiration generate thirty eight total molecules of ATP from one glucose molecule.

Aerobic respiration: 38 ATP / glucose molecule

Anaerobic respiration: 2 ATP / glucose molecule

Steps of the Electron Transport Chain

- 1- Electron carriers NADH and FADH₂ transferred electrons to the inner mitochondrial membrane.
- 2- NADH and FADH₂ donate their electrons in to series of membrane proteins. Each protein uses the energy in the electron to pump H+ into the intermembrane space of the mitochondrion before passing the electron the next carrier. The final electron receptor is O₂, which combines with two protons, H+ to form water

Summary of Cellular Respiration

Stage	Location	Reaction
Glycolysis	Cytosol	Converts 1 molecule of glucose to 2 molecules of pyruvate 2 ATP and 2 NADH molecules are produced and water is released
Oxidation of pyruvate	Mitochondria	Converts 2 molecules of pyruvate to 2 molecules of acetyl CoA 2 NADH molecules are produced and carbon dioxide is released
Kreb Cycle	Mitochondrial Matrix	Converts 2 molecules of acetyl CoA to 6 molecules of NADH, 2 molecules of FADH ₂ , and molecules of ATP. Carbon dioxide is released
Electron Transport Chain	Mitochnondria	10 NADH molecules and 2 FADH ₂ are converted to 32 ATP molecules Oxygen is consumed and water is produced

FERMENTATION

• Fermentation is the enzymatic breakdown of carbohydrates in which the final electron acceptor is an organic molecule.

Fermentation

- Eukaryotic cells can produce ATP through fermentation.
- Fermentation is much less efficient than the four stages of cellular respiration, but allows ATP to produce when oxygen is not available
- Begins with glycolysis producing only 2 ATP.
- All other stages cannot be completed without oxygen.

Continue...

- Two types of fermentation:
 - 1- Alcoholic Fermentation: Pyruvic acid is converted to ethanol.
 - Used by fungi and some plants
 - Used to make beer, wine, and bread
 - 2- Lactic Acid Fermentation: Pyruvic acid is converted to lactate.
 - Lactic acid fermentation is used by animals and bacteria
 - Muscle Cramps (occurs when over exercise your muscles)
 - Sour Cream and buttermilk

Example: The sour taste of sourdough comes from the lactic acid produced by the fermentation of bacteria

Fermentation

- Can generate ATP in absence of O₂ – anaerobic
- Anaerobic organisms create ATP through glycolysis
 - Pyruvate converted to ethanol and CO₂ (yeast) or lactate (muscle)
- Process called fermentation

