Nucleoprotein Metabolism

Synopsis

- Fates of dietary Nucleoproteins/Nucleic Acids.
- De novo Biosynthesis of Purines and Pyrimidines.
- Salvage of Purines and Pyrimidines
- Catabolism of Purines and Pyrimidines

Fates Of Dietary Nucleoproteins

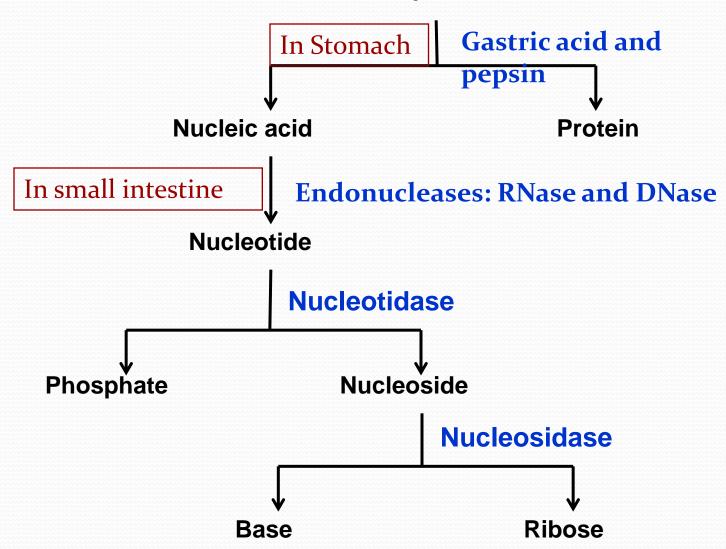
- Nucleoproteins are conjugated Proteins.
- containing Nucleic acids as a prosthetic group.

 Nucleoproteins are constituents of each and every living cell. Food substances of both plant and animal origin contain
 Nucleoproteins or Nucleic acids in them.

Digestion and Absorption Of Nucleoproteins

 Dietary Nucleic acids remain unchanged in mouth.

• In Stomach gastric HCl denatures Dietary Nucleoproteins.


Cleaves Hydrogen bonds of Nucleic acids.

 Predominant and complete digestion of Nucleic acids takes place in small intestine. • The specific Enzymes required for the digestion of DNA and RNA are present in the Pancreatic and Intestinal juice which specifically act and break the bonds.

- Nucleic acids: are digested in the small intestine by:
 Deoxyribonuclease /
 Phosphodiesterase to generate
 Nucleotides.
- Nucleotides and Nucleosides are,
 degraded to three components:
- Nitrogen Base, Pentose and Phosphate

Degradation of Nucleoproteins

Nucleoprotein

End Products Of Nucleic Acid Digestion

- •Nitrogen Bases:
 - Purines and Pyrimidine
- •Sugars:
 - Ribose and Deoxyribose
- Phosphoric Acid

Absorption

- Dietary Purines and Pyrimidines obtained through digestion of Nucleic acids are absorbed through intestinal lumen.
- Some unabsorbed Purines are metabolized by intestinal microbial flora and excreted out through feces.

- The absorbed Nitrogen bases are carried to Liver.
- These are degraded and excreted out of the body.
- Ribose can be absorbed and catabolized to generate energy.

Nucleotides

- Nucleotides are chemically composed of
 - Nitrogen base: Purines and Pyrimidines
 - Sugar: Ribose / Deoxyribose
 - Phosphate group

Functions of Nucleotides

- Precursors/Building blocks for DNA and RNA synthesis
- Essential carriers of chemical energy, especially ATP (Energy transformation)
- Components of the coenzymes NAD+, FAD, and coenzyme A

Can Cells Biosynthesize Nucleotides?

- Nearly all living organisms biosynthesize Purine and Pyrimidine Nucleotides through "De novo biosynthesis pathway"
- Many organisms also "Salvage" Purines and Pyrimidines from diet and degradative pathways.