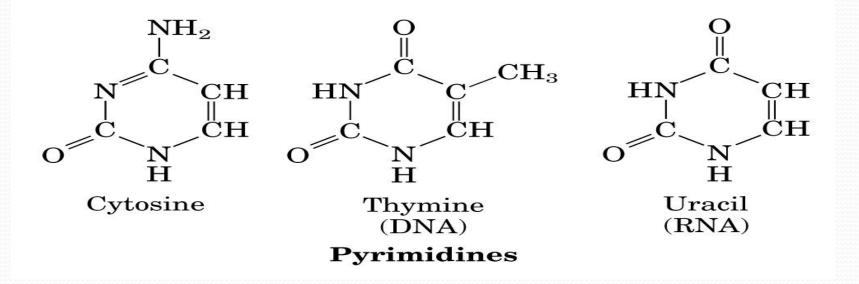

# Purine Nucleotide Metabolism

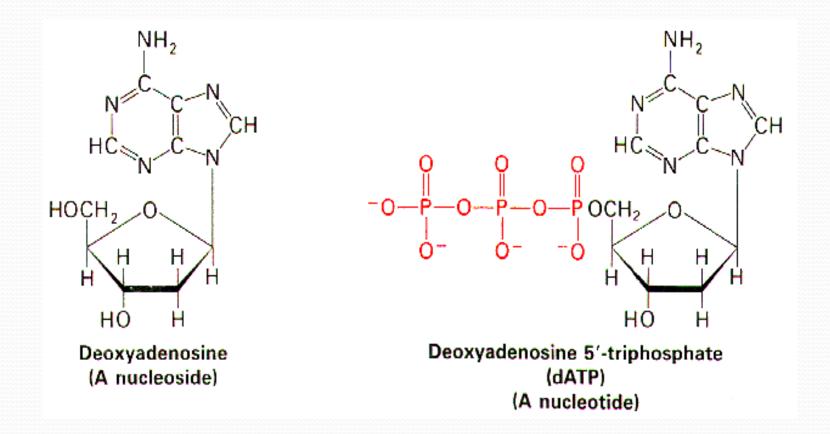
# Anabolism

#### **Purines And Pyrimidines**



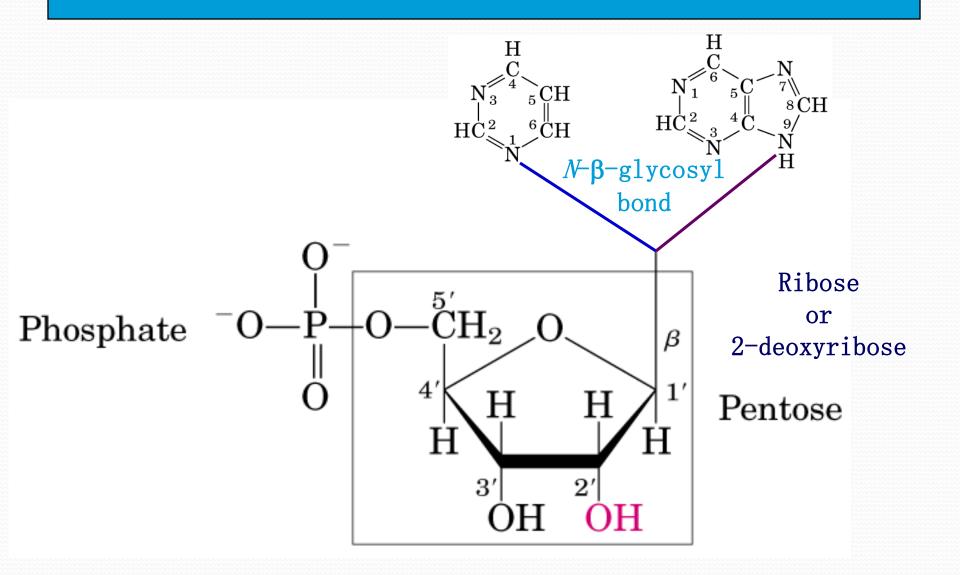



Adenine


Guanine

**Purines** 




#### Nucleoside and Nucleotide

- Nucleoside = Nitrogenous base Ribose
- Nucleotide = Nitrogenous base Ribose Phosphate



# **Nucleotides** are **Building blocks** of **Nucleic acids**

#### Structure of Nucleotides



# There are two pathways leading to Biosynthesis of Nucleotides

#### • De Novo Biosynthesis:

This is a main synthetic pathway.

 The biosynthesis of nucleotides begins /very new with the use of small metabolic precursors as a raw material:

Amino acids, Ribose-5-phosphate,
 CO2, and One-carbon units.

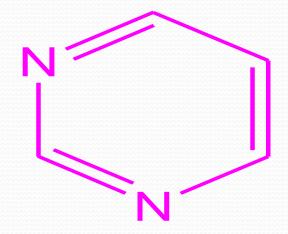
Salvage pathways: The synthesis of nucleotide by recycle of the free Nitrogen bases or nucleosides released from nucleic acid breakdown. • This is important in **Brain and Bone** 

marrow

## De Novo Biosynthesis Of Purine Nucleotides

Site Of Purine Nucleotide Biosynthesis:

## Predominantly In cytosol of Liver,


- To some extent in small intestine and Thymus.
- In humans, all necessary enzymes for Purine Nucleotide biosynthesis are found in the cytoplasm of the cell.

 Denovo biosynthesis occurs in most of the cells' cytosol • Except human Brain, Polymorphonuclear leukocytes and **Erythrocytes.** 

Requirements For De Novo Biosynthesis of Purine Nucleotides \*Purines are synthesized using 5PhosphoRibose (R-5-P) as the starting mateRequirements For De Novo Biosynthesis

PRPP (5-Phosphoribosyl-1-Pyrophosphate) is an active donor of R-5-P.

## Biosynthesis Of Pyrimidines Nucleotides



# Pyrimidine Nucleotide Metabolism

- There are also two synthesis pathways of Pyrimidine nucleotides:
- Denovo Synthesis and Salvage pathway.

# **De Novo Synthesis Pathway**

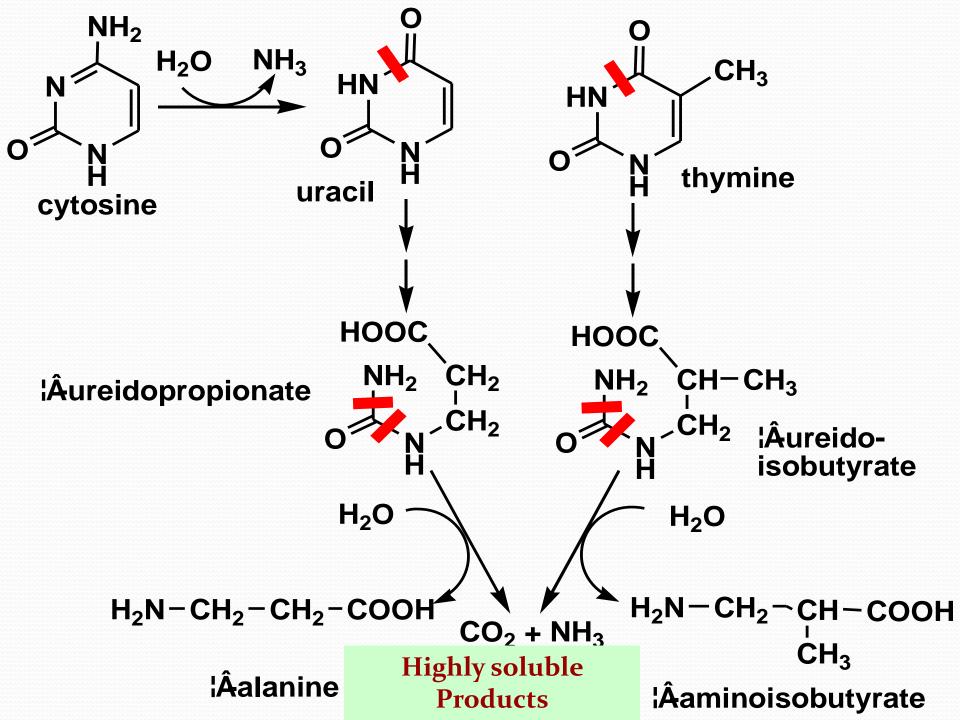
 In De novo pathway the Pyrimidine ring is assembled first and then linked to Ribose phosphate. • The carbon and nitrogen atoms in the Pyrimidine ring are derived from:

- Bicarbonate
- •Aspartate
- Glutamine

# Salvage Pathway

- The significance of salvage pathway :
  Save the fuel.
  - Some tissues and organs such as brain and bone marrow are only capable of synthesizing nucleotides by salvage pathway.

### **Catabolism Of Purine Nucleotides**


- Uric acid is waste <u>excreted end product of</u> <u>Purine</u> catabolism.
- The rate of uric acid excretion by the normal adult human is about 0.6 g/24 h in urine.
- The normal concentration of uric acid in the serum of adults is in the range of 3-7 mg/dl.

### **Catabolism Of Pyrimidines**

- Catabolism of Pyrimidine
- Nitrogen Bases Cytosine and Uracil yields :
  - β-Alanine,
  - Ammonium ions
  - CO<sub>2</sub>

 $\bullet$   $\beta\mathchar`-Alanine can be recycled into the synthesis of coenzyme A$ 

- Catabolism of **Thymine** yields:
  - β-Aminoisobutyric acid
  - Ammonium ions
  - CO<sub>2</sub>



# Principal differences between metabolism of Purines and Pyrimidines

| Character                               | Purines<br>De Novo<br>Synthesis                        | Pyrimidines<br>De Novo<br>Synthesis |
|-----------------------------------------|--------------------------------------------------------|-------------------------------------|
| Number Of<br>Steps<br>Involved          | 11 Steps                                               | 6 Steps                             |
| Precursors Of<br>Ring                   | Amino acids :Asp Gly<br>and Gln<br>N10FormyITHF<br>CO2 | Amino acids :Asp and Gln<br>CO2     |
| Major Portion<br>Of Ring<br>provided by | Glycine                                                | Aspartate                           |

| Character                              | Purines<br>De Novo<br>Synthesis                                                             | Pyrimidines<br>De Novo<br>Synthesis                                                                       |
|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Acquisition of<br>Ribose-<br>Phosphate | In Starting Steps                                                                           | In End Steps                                                                                              |
| Formation of<br>N-Glycosidic<br>bond   | In 1 <sup>st</sup> step of their<br>biosynthesis<br>(PRPP is the 1 <sup>st</sup> Substrate) | a heterocyclic ring is<br>formed first, then it<br>reacts with PRPP                                       |
| products of<br>degradation             | Uric acid<br>(poor solubility in H <sub>2</sub> O)<br>NH <sub>3</sub>                       | $CO_2$ , NH <sub>3</sub> , $\beta$ -Amino<br>Isobutyrate and $\beta$ Ala<br>(soluble in H <sub>2</sub> O) |

| Character                        | Purines<br>De Novo<br>Synthesis | Pyrimidines<br>De Novo<br>Synthesis |
|----------------------------------|---------------------------------|-------------------------------------|
| Number Of<br>ATPs<br>Involved    | 6 ATPs                          | 2ATPs                               |
| Nucleotide<br>Produced in<br>End | IMP                             | UMP                                 |
| Ring Closure<br>At               | 6 and 11 steps                  | 3 <sup>rd</sup> Step                |