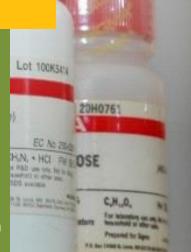
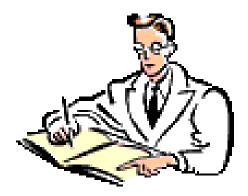


- RED
- Flammability
- BLUE
- Health
- YELLOW Reactivity
- WHITE Special



{NFPA-National Fire Protection Association}

Chemical Safety



سلامة وامن حيوي امدرنا طالب محسن محاضرة رقم 5

Chemical Exposure Severity & Duration

- "Acute" effects usually occur rapidly as a result of short-term exposures, and are of short duration
- "Chronic" effects generally occur as a result of long-term exposure, and are of long duration

Types of chemical hazards

- Toxic substances
- Solvents
- Corrosives
- Flammables
- Irritants
- Carcinogens
- Teratogens
- Mutagens
- Explosives
- Radiation and many, many more

How do toxic materials enter the body?

- By mouth (contaminated fingers!)
- By breathing in gases, aerosols or powder
- By skin contact or damage
- By absorption through intact skin
- By splashes into the eyes

Corrosives

 Typical examples are sulfuric acid, nitric acid, potassium hydroxide (caustic potash), sodium hydroxide (caustic soda), bromine and phenol.

- Corrosive substances causes destructive burns on the tissue by chemical action at the site of contact.
- Corrosive effect can also occur in the respiratory tract in case of inhalation and in the gastrointestinal tract in case of ingestion.

Oxidisers

 Typical examples include hydrogen peroxide, nitric acid, perchloric acid, sulphuric acid, chlorates, chromates, nitrates, peroxides, permanganates and picrates.

- Oxidisers are chemicals which decompose readily under certain conditions to yield oxygen.
- They can cause a fire to burn violently.
- Oxidisers must not be stored with flammables.

Flammables

- Flammable substances are those that readily catch fire and burn in air.
- The vapours released from a flammable liquid are a common fire hazard in a laboratory.

 The degree of hazard associated with a flammable liquid depends on its flash point, flammability limit and ignition temperature.

Potentially explosive chemicals

 Chemicals when subjected to heat, impact, or friction, undergoes rapid chemical change, evolving large volumes of gases which cause sudden increase in pressure.

- Heat, light, mechanical shock and certain catalysts can initiate explosive reactions.
- Shock sensitive substances include acetylides, azides, nitrogen triiodide, organic nitrates, nitro compounds, perchlorate salts and organic peroxides.

Toxic chemicals

 Toxic chemicals produce injurious or lethal effects upon contact with body cells due to their chemical properties.

- The toxic effects depend upon the extent of exposure and the inherent toxicity of a chemical.
- The extent of exposure is determined by the dose, duration and frequency of exposure and the route of exposure.

Toxic chemicals

 Toxic effects of a chemical may occur after a single (acute) exposure or long term repeated (chronic) exposure.

- Examples of acute toxins are sodiumcyanide, sodium azide and dimethyl mercury.
- Benzene is an example of a chronic toxin which can cause damage after repeated or long term exposure.

Types of toxins - target organ/tissue - examples

- Neurotoxins (nervous system)- mercury (metallic, inorganic and organic), xylene, carbon disulphide, n-hexane, trichloroethylene.
- Hematotoxins (blood)-carbon monoxide, nitrates aromatic amine compounds.
- Hepatotoxins (liver)- chloroform, dinitrobenzene
- Nephrotoxins (kidney)- cadmium, mercury, carbon tetrachloride
- Dermatotoxins (skin)- organic solvents

Water reactive chemicals

- These chemicals react violently when they come in contact with moisture or water.
- Examples include lithium, sodium, potassium, aluminium bromide, calcium oxide, sulfur trioxide and phosphorus pentachloride.

Signs and Labeling of chemicals

Safety Data Sheets (SDS)

- A Safety Data Sheet (SDS) is a chemical information sheet
 provided by the manufacturer or supplier of chemicals
- It describes the identity, properties, uses, precautions for use and safe handling procedures of a hazardous chemical
- A SDS must be readily available at each location where the chemical is used

Labeling of hazardous chemicals

When labeling a hazardous chemical, the minimum requirements on each label are:

- Name of user
- Description of contents
- Concentration
- Appropriate hazard labels
- Date of preparation

Chemicals in the original container, as supplied by the manufacturer, are usually correctly labeled.

Labels – NFPA Diamond

• RED - Flammability

• BLUE - Health

• YELLOW - Reactivity

• WHITE - Special

Labels - Health Hazard

• What the numbers show

0 = No hazard

1 = Slight hazard

2 = **Dangerous**

3 = Extreme danger

4 = Deadly

Labels - Flammability

- What the numbers show
 - 0 = Will not burn
 - 1 = Ignites above 200 degrees F
 - 2 = Ignites below 200 degrees F
 - 3 = Ignites below 100 degrees F
 - 4 = Ignites below 73 degrees F

Labels - Reactivity

• What the numbers show

0 = Stable

1 = Normally Stable

2 = Unstable

3 = Explosive

4 = May detonate

Labels - Special Hazard

- What the letters show
 - \cdot OX = Oxidizer
 - · ACID = Acid
 - · ALK = Alkali
 - · COR = Corrosive
 - W
 = Use No Water
 - Radioactive

Transporting chemicals

Transporting chemicals inappropriately can result in spills, potential chemical exposures and fire hazards.

- Chemicals should only be transported in containers made of materials that are compatible with the chemical.
- When transported through public corridors, chemicals must be in sturdy boxes or external containers.

Storing chemicals

Storing chemicals

Proper storage of chemicals in the laboratory is *extremely* important.

Improper storage has resulted in fires; explosions; and serious injuries to, and death of, individuals.

General guidelines

- Do not store excessive quantities of chemicals in the laboratory.
- All chemicals and chemical mixtures must be labeled.
- Store reagents in cabinets or on shelves.

 Chemicals requiring refrigeration should be properly labeled and sealed to prevent escape of vapors.

General guidelines, continued

- No chemicals (or waste chemicals) should ever be stored on the floor.
- Flammable liquids requiring cold storage must be stored only in refrigerators or freezers.
- Date bottles of chemicals when they are opened.
- Storage areas should be periodically inspected for signs of damaged containers, and replaced if necessary.
- •

Reference

1-Astuto-Gribble, L.M. & Caskey, S.A. 2014. Laboratory Biosafety and Biosecurity Risk Assessment Technical Guidance Document (No. SAND2014-15939R). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). 2-World Health Organization Staff & World Health Organization. 2004. Laboratory biosafety manual. 3 rd. ed. World Health Organization