University of Anbar

College of Science

Applied Mathematics

Numerical Analysis

Dr. Hamad Mohammed Salih

Third lecture

4- The Determinant of Matrix

The determinant of square matrix is a number that can be useful in determining the existence and uniqueness of solution to linear systems. We will denote the determinant of a matrix by $\operatorname{det} \mathrm{A}$, but it is also common to use the notation $|\mathrm{A}|$.

Definition: Suppose that A is a square matrix

1-if $\mathrm{A}=\left[\mathrm{a}_{1}\right]$ is a $|x|$ matrix, then $|A|=a$

2-if A is an $n \times n$ matrix, with $n>1$ the minor $M_{i j}$ is determinant of the $(n-1) \times(n-1)$ submatrix of A obtained by determinant of the ith row and ith Column of the matrix A.

3-the cofactor $A_{i j}$ associated with $M_{i j}$ is defined $A_{i j}=(-1)^{i+j} M_{i j}$

4- the determinant of the $n \times n$ matrix A , when $n>1$, is given by

$$
|A|=\sum_{j=1}^{n} a_{i j} A_{i j}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j} \text { for any } i=1,2, \ldots, n
$$

Or by

$$
|A|=\sum_{i=1}^{n} a_{i j} A_{i j}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j} \text { for any } j=1,2, \ldots, n
$$

Example: Find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
2 & -1 & 3 & 0 \\
4 & -2 & 7 & 0 \\
-3 & -4 & 1 & 5 \\
6 & -6 & 8 & 0
\end{array}\right]
$$

Using the row or column with the most zero entries

Solution

To compute $|A|$, it is easiest to use the fourth column because three of its entries are 0 .

$$
\begin{aligned}
& |A|=a_{14}(-1)^{1+4} M_{14}+a_{24}(-1)^{2+4} M_{24}+a_{34}(-1)^{3+4} M_{34}+a_{44}(-1)^{4+4} M_{44}=-5 M_{34} \\
& |\mathrm{~A}|=0(-1)^{1+4}\left|\begin{array}{ccc}
4 & -2 & 7 \\
-3 & -4 & 1 \\
6 & -6 & 8
\end{array}\right|+0(-1)^{2+4}\left|\begin{array}{ccc}
2 & -1 & 3 \\
-3 & -4 & 1 \\
6 & -6 & 8
\end{array}\right|+5(-1)^{3+4}\left|\begin{array}{lll}
2 & -1 & 3 \\
4 & -2 & 7 \\
6 & -6 & 8
\end{array}\right|+0(-1)^{4+4}\left|\begin{array}{ccc}
2 & -1 & 3 \\
4 & -2 & 7 \\
-3 & -4 & 1
\end{array}\right| \\
& \left.|A=0+0-5| \begin{array}{ccc}
2 & -1 & 3 \\
4 & -2 & 7 \\
6 & -6 & 8
\end{array}|+0=-5| \begin{array}{ccc}
2 & -1 & 3 \\
4 & -2 & 7 \\
6 & -6 & 8
\end{array} \right\rvert\,
\end{aligned}
$$

Eliminating the third row and the fourth column of A and expanding the resulting 3×3 matrix by its first row gives

$$
\begin{aligned}
|A| & =-5\left|\begin{array}{lll}
2 & -1 & 3 \\
4 & -2 & 7 \\
6 & -6 & 8
\end{array}\right|=-5\left\{2(-1)^{1+1} \times\left|\begin{array}{cc}
-2 & 7 \\
-6 & 8
\end{array}\right|(-)^{1+2}(-1)\left|\begin{array}{ll}
4 & 7 \\
6 & 8
\end{array}\right|(-)^{1+3}(3)\left|\begin{array}{ll}
4 & -2 \\
6 & -6
\end{array}\right|\right\} \\
& =-5[2(-16+42)+(32-42)+3(-24+12)]=-30
\end{aligned}
$$

5- Matrix Factorization method

To solve a system of the form $A=x b$ can be to factor a matrix. The factorization is particularly useful when it has the form $A=L U$. Where L is lower triangular and U is upper triangular then we can easily solve for x using a two - step process.

1-first define the temporary vector $y=U x$ and solve the lower triangular system

$$
L y=b \quad \text { for } \mathrm{y} .
$$

2-once y is known, the upper triangular system $U x=y$ to determine the solution x .

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=A=L U
$$

1- When all element diagonal of the matrix L is one will it called Doolittle and write as follows.

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]
$$

2- When all element diagonal of the matrix U is one will it called Crout and write as follows.

$$
\begin{aligned}
& U=\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]}
\end{aligned}
$$

The result of multiplying the two matrices (L and U) will be as follows

$$
\begin{array}{lll}
1 \times u_{11}=a_{11} & l_{21} \times u_{11}=a_{21} & l_{31} \times u_{11}=a_{31} \\
1 \times u_{12}=a_{12} & l_{21} \times u_{12}+1 \times u_{22}=a_{22} & l_{31} \times u_{12}+l_{32} \times u_{22}=a_{32} \\
1 \times u_{13}=a_{13} & l_{21} \times u_{13}+1 \times u_{23}=a_{23} & l_{31} \times u_{13}+l_{32} \times u_{23}+1 \times u_{33}=a_{33}
\end{array}
$$

after that, we can use the two matrices in two formulas down.

$$
\begin{align*}
& U x=y \tag{A}\\
& L y=b \tag{B}
\end{align*}
$$

From (B) will obtained y and substitution in (A) to fine the value of x .
Example : us crout factorization to solve the linear system .

$$
\begin{aligned}
& x_{1}+5 x_{2}+3 x_{3}=22 \\
& 3 x_{1}+19 x_{2}+17 x_{3}=94 \\
& 8 x_{1}+36 x_{2}+25 x_{3}=166
\end{aligned}
$$

Solution

$A=L U$
$\left[\begin{array}{ccc}1 & 5 & 3 \\ 3 & 19 & 17 \\ 8 & 36 & 25\end{array}\right]=\left[\begin{array}{ccc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]$
$l_{11} \times 1=1 \quad l_{21} \times 1=3 \quad l_{31} \times 1=8$
$l_{11} \times u_{12}=5 \Rightarrow u_{12}=5 \quad l_{21} \times u_{12}+l_{22} \times 1=19 \quad l_{31} \times u_{12}+l_{32}=36$
$l_{11} \times u_{13}=3 \Rightarrow u_{13}=3 \quad l_{21} \times u_{13}+l_{22} \times u_{23}=17 \quad l_{31} \times u_{13}+l_{32} \times u_{23}+l_{33}=25$
$\Rightarrow l_{21} \times u_{12}+l_{22} \times 1=19 \Rightarrow 3(5)+l_{22}=19 \Rightarrow l_{22}=19-15 \Rightarrow l_{22}=4$
$l_{21} \times u_{13}+l_{22} \times u_{23}=17 \Rightarrow u_{23}=2$
$l_{31} \times u_{12}+l_{32}=36 \Rightarrow l_{32}=-4$
$l_{31} \times u_{13}+l_{32} \times u_{23}+l_{33}=25 \Rightarrow l_{33}=9$
$\left[\begin{array}{ccc}1 & 5 & 3 \\ 3 & 19 & 17 \\ 8 & 36 & 25\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 4 & 0 \\ 8 & -4 & 9\end{array}\right]\left[\begin{array}{lll}1 & 5 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
No we us

$$
\begin{equation*}
L y=b \tag{A}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 4 & 0 \\
8 & -4 & 9
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
22 \\
94 \\
166
\end{array}\right]} \\
& y_{1}=22 \\
& 3 y_{1}+4 y_{2}=94 \Rightarrow 4 y_{2}=94-66=28 \Rightarrow y_{2}=7 \\
& 8 y_{1}-4 y_{2}+9 y_{3}=166 \Rightarrow 9 y_{3}=166+28-176 \Rightarrow y_{3}=2 \tag{B}
\end{align*}
$$

From equation $(\mathrm{B}) \quad \Rightarrow U x=y$
$\left[\begin{array}{lll}1 & 5 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}22 \\ 7 \\ 2\end{array}\right]$
$x_{3}=2$
$x_{2}+2 x_{3}=7 \Rightarrow x_{2}=3$
$x_{1}+5 x_{2}+3 x_{3}=22 \Rightarrow x_{1}=1$
Example : use the crout factorization to solve the linear system
a)

$$
\begin{aligned}
2 x_{1}-x_{2}+ & =1 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
-x_{2}+2 x_{3}-x_{4} & =0 \\
-x_{3}+2 x_{4} & =1
\end{aligned}
$$

B)

$$
\begin{aligned}
3 x_{1}+x_{2}+ & =-1 \\
2 x_{1}+4 x_{2}+x_{3} & =7 \\
2 x_{2}+5 x_{3} & =9
\end{aligned}
$$

Example

a) Use the Doolitte factorization for the tridiagonal system to solve the following systems B)

$$
\begin{gathered}
2 x_{1}-x_{2}+\quad=3 \\
-x_{1}+2 x_{2}-x_{3}=-3 \\
-x_{2}+2 x_{3}=1
\end{gathered}
$$

$$
\begin{array}{cc}
4 x_{1}+x_{2}+x_{3}+ & x_{4}=0.65 \\
x_{1}+3 x_{2}-x_{3}+ & x_{4}=0.05 \\
x_{1}-x_{2}+2 x_{3} & =0 \\
x_{1}+x_{2}+2 x_{4} & =0.5
\end{array}
$$

Reference

1-Numerical Analysis. Richara L. Burden, and J. Douglas Faires .Ninth Edition.
2- Numerical Methods. J. Douglas Faires and Richara L. Burden. Fourth Edition.
3- Numerical mathematics and Computing. Ward Cheney and David Kincaid. Second Edition.

