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The set of fundamental cycles with respect to any spanning tree in a
connected graph are the only independent cycles in a graph. The

remaining cycles can be obtained as ring sums of these cycles.
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C; = {eq, €6, €7} 7, = {e,, es, e, e}
C; = {eq, ez, e}

Cy =1{eze3,66};C, =CL D Gy _
Cs = {ey,e4,6566};C5 = C, D C3 3 = {e1, e5,€7}
Co = {e1,€5,€3,4,€5};C6 = C; @ Cq
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A submatrix of a cycle matrix in which all rows correspond to a set
of fundamental cycles (independent cycles) 1s called a fundamental
cycle matrix, denoted by By . Note that the permutation of rows or

columns or both do not affect the matrix B . I[f the order and size of a
connected graph G are respectively n and e, then By is an (e —n + 1)

X e matrix because the number of fundamental cycles 1s e —n + 1,
cach fundamental cycle being produced by one chord.
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By arranging the columns in Bf such that all the e —n + 1 chords

correspond to the first e — n + 1 columns and rearranging the rows such
that the first row corresponds to the fundamental cycle made by the
chord in the first column, the second row to the fundamental
cycle made by the second, and so on. A matrix By thus arranged has the

form By = [Iu: Bt], where [, is an identity matrix of orderp=e —n +1
and B; 1s the remaining u X (n — 1) submatrix, corresponding to the
branches of the spanning tree.
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00 1 01 1l~1p 1 0 01 0 1
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0o 01 : 0 I 1]

Identity r'natrix [ 0 [:l'-‘ [l |
comesponding fothe . p. Iy=10 1 0| andB, =10 1
0

1
(e—n+1)x(n—-1)
chord of T of order corresponding to the

pu=e—n+1 0 branches of T

{61, 63,66} {62’64’ 65 ’67}

0
0 1 -‘ Submatrix of order
0 1
1 1]
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Note:

From equation By = [I,,:B;], we have rank By = it =& —n+ 1. Since By is a submatrix

of the cycle matrix B, then, rankB = rank(By) and thus, rank(B) > € —n+1.

Theorem : (Sylvester’s Theorem) If A and B are matrices of order

k X nand n X p respectively, then nullity(AB) < nullity(A)
+ nullity(B).

Theorem: If B(G) is a cycle matrix of a connected graph G with n
vertices and e edges, then rank of B(G) 1s e —n + 1.

Theorem: If B(G) is a cycle matrix of a disconnected graph G

with n vertices , e edges and k components , then rank of B(G) 1s
e—n+k.
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