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1.5 Fermat’s Principle 

It was proposed by Hero long time ago what has since become known as a variational principle. In this treatment 

of reflection, it is assumed that the path taken by light in going from some point 𝑆 to a point 𝑃 via a reflecting 

surface was the shortest possible one. This can be seen rather easily in Fig. 1.13, which depicts a point source 𝑆 

emitting a number of rays that are then “reflected” toward 𝑃. Presumably, only one of these paths will have any 

physical reality. If we draw the rays as if they emanated from 𝑆́ (the image of 𝑆), none of the distances to 𝑃 will 

have been altered (i.e., 𝑆𝐴𝑃 = 𝑆́𝐴𝑃, 𝑆𝐵𝑃 = 𝑆́𝐵𝑃, etc.). But obviously the straight-line path 𝑆́𝐵𝑃, which 

corresponds to 𝜃𝑖= 𝜃𝑡, is the shortest possible one. 

 

 

Figure 1. 1. Minimum path from the source S to the observer’s eye at P. 

 

Until in 1657 Fermat propounded his celebrated Principle of Least Time, which encompassed both 

reflection and refraction. A beam of light traversing an interface does not take a straight line or 

minimum spatial path between a point in the incident medium and one in the transmitting medium. 

Fermat consequently reformulated Hero’s statement to read: the actual path between two points taken 

by a beam of light is the one that is traversed in the least time. As we shall see, even this form of the 

statement is incomplete and a bit erroneous at that. As an example of the application of the principle 

to the case of refraction, refer to Fig. 1.14, where we minimize 𝑡, the transit time from 𝑆 to 𝑃, with 

respect to the variable 𝑥. In other words, changing 𝑥 shifts point 𝑂, changing the ray from 𝑆 to 𝑃. The 

smallest transit time will then presumably coincide with the actual path. Hence 

𝑡 =
𝑆𝑂̅̅̅̅

𝑣𝑖
+
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Figure 1. 2. Fermat’s Principle applied to refraction. 

To minimize t(x) with respect to variations in x, we set dt>dx = 0, that is, 

 

𝑑𝑡

𝑑𝑥
=

𝑥

𝑣𝑖(ℎ
2 + 𝑥2)1 2⁄

+
−(𝑎 − 𝑥)

𝑣𝑡[𝑏
2 + (𝑎 − 𝑥)2]1 2⁄

= 0 

 

Using the diagram, we can rewrite the expression as 

𝑠𝑖𝑛𝜃𝑖

𝑣𝑖
=

𝑠𝑖𝑛𝜃𝑡

𝑣𝑡
 

which is no less than Snell’s Law. If a beam of light is to advance from S to 𝑃 in the least possible time, 

it must comply with the Law of Refraction. Suppose that we have a stratified material composed of m 

layers, each having a different index of refraction, as in Fig. 1.15. The transit time from 𝑆 to 𝑃 will then 

be 

                     𝑡 =
𝑆1

𝑣1
+

𝑆2

𝑣2
+⋅⋅⋅ +

𝑆𝑚

𝑣𝑚
 

                      𝑡 = ∑𝑠𝑖 𝑣𝑖⁄

𝑚

𝑖=1

 

where 𝑠𝑖  and 𝑣𝑖are the path length and speed, respectively, 

 associated with the 𝑖th contribution. Thus 
 
 
 
 

 

Figure 1. 3. A ray propagating through a layered material. 



           𝑡 =
1

𝑐
∑𝑛𝑖

𝑚

𝑖=1

𝑠𝑖                        (1.6) 

 

in which the summation is known as the optical path length (𝑂𝑃𝐿) traversed by the ray, in contrast to 

the spatial path length ∑ 𝑠𝑖
𝑚
𝑖=1 . Clearly, for an inhomogeneous medium where 𝑛 is a function of 

position, the summation must be changed to an integral: 

              𝑂𝑃𝐿 = ∫ 𝑛(𝑠)𝑑𝑠

𝑃

𝑆

               (1.7) 

The optical path length corresponds to the distance in vacuum equivalent to the distance traversed 
(𝒔) in the medium of index 𝒏. That is, the two will correspond to the same number of wavelengths, 
(𝑂𝑃𝐿) 𝜆𝜊⁄ = 𝑠/𝜆), and the same phase change as the light advances. 
Inasmuch as 𝑛 = (𝑂𝑃𝐿) 𝑐⁄ , we can restate Fermat’s Principle: light, in going from point 𝑆 to 𝑃, 

traverses the route having the smallest optical path length. 

Fermat’s Principle is not so much a computational device as it is a concise way of thinking about the 

propagation of light. It is a statement about the grand scheme of things without any concern for the 

contributing mechanisms, and as such it will yield insights under a myriad of circumstances. 

 

1.6 The Electromagnetic Approach 

We have studied reflection and refraction from the perspectives of Scattering Theory. Yet another and 

even more powerful approach is provided by Electromagnetic Theory. Unlike the previous techniques, 

which say nothing about the incident, reflected, and transmitted radiant flux densities (i.e., 𝐼𝑟,𝐼𝑖, 𝐼𝑡, 

respectively), Electromagnetic Theory treats these within the framework of a far more complete 

description. 

1.6.1 Waves at an Interface 

Suppose that the incident monochromatic light wave is planar, so that it has the form 

                                                  𝐸⃗ 𝑖 = 𝐸⃗ 𝜊𝑖𝑒𝑥𝑝[𝑖(𝑘⃗ 𝑖 ⋅ 𝑟 − 𝑤𝑖𝑡)]                          (1.8)                

Or more simply, 

                                                      𝐸⃗ 𝑖 = 𝐸⃗ 𝜊𝑖𝑐𝑜𝑠(𝑘⃗ 𝑖 ⋅ 𝑟 − 𝑤𝑖𝑡)                            (1.9)               

where the surfaces of constant phase are those for which 𝑘⃗ 𝑖 ⋅ 𝑟 = constant. Assume that 𝐸⃗ 𝜊𝑖is constant 

in time; that is, the wave is linearly or plane polarized. Note that just as the origin in time, 𝑡 = 0, is 

arbitrary, so too is the origin 𝑂 in space, where 𝑟 = 0. Thus, making no assumptions about their 



directions, frequencies, wavelengths, phases, or amplitudes, we can write the reflected and 

transmitted waves as 

                                                   𝐸⃗ 𝑟 = 𝐸⃗ 𝜊𝑟𝑐𝑜𝑠(𝑘⃗ 𝑟 ⋅ 𝑟 − 𝜔𝑟𝑡 + 𝜀𝑟)                      (1.10) 

                                                   𝐸⃗ 𝑖𝑡 = 𝐸⃗ 𝜊𝑡𝑐𝑜𝑠(𝑘⃗ 𝑡 ⋅ 𝑟 − 𝜔𝑡𝑡 + 𝜀𝑡)                       (1.11) 

Here 𝜀𝑟 and 𝜀𝑡 are phase constants relative to 𝐸⃗ 𝑖and are introduced because the position of the origin 

is not unique. Figure 1.16 depicts the waves in the vicinity of the planar interface between two 

homogeneous lossless dielectric media of indices 𝑛𝑖 and 𝑛𝑡. 

 

Figure 1. 4. Plane waves incident on the boundary between two homogeneous, isotropic, lossless dielectric media. 
 

The laws of Electromagnetic Theory lead to certain requirements that must be met by the fields, and 

they are referred to as the boundary conditions. Specifically, one of these is that the component of the 

electric field 𝐸⃗  that is tangent to the interface must be continuous across it. An electromagnetic 

impinges from above on the interface, and the arrows represent either the incident and transmitted 

𝐸⃗ -fields or the corresponding 𝐵⃗ -fields. For the moment we’ll focus on the 𝐸⃗ -fields. We draw a narrow 

closed (dashed) path 𝐶 that runs parallel to the interface inside both media. Faraday’s Induction Law 

                               ∮𝑐𝐸⃗
 ⋅ 𝑑ℓ⃗ = −∬

𝜕𝑩⃗⃗ 

𝜕𝑡
⋅ 𝑑𝑺⃗⃗                (1.12) 

tells us that if we add up (via a line integral) the components of 𝐸⃗  parallel to the path elements 𝑑ℓ⃗ , 

each one times 𝑑ℓ⃗  , over the whole path 𝐶, the result (a voltage difference) will equal the time rate-of-

change of the magnetic flux through the area bounded by 𝐶. But if we make the dashed loop very 

narrow there will be no flux through C, and the contribution to the line integral (moving right) along 

the top That way the net voltage drop around C will be zero. If the tangential components of 𝐸⃗ 𝑖 and 𝐸⃗ 𝑡 

in the immediate vicinity of the interface are equal (e.g., both pointing to the right), because the paths 

reverse direction above and below the interface, the integral around C will indeed go to zero. In other 

words, the total tangential component of 𝐸⃗ on one side of the surface must equal that on the other. 
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