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Reflectance and Transmittance 

Consider a circular beam of light incident on a surface, as shown in Fig. 1.20, such that there is an 

illuminated spot of area A. The radiant flux density (W/m2) or irradiance is 

 

                                  𝐼 = 〈𝑆〉𝑇 =
𝑐𝜖0

2
𝐸0

2                          (1.44)      

 

In the case at hand (Fig. 1.20), let 𝐼𝑖, 𝐼𝑟, and 𝐼𝑡 be the incident, reflected, and transmitted flux densities, 

respectively. The cross-sectional areas of the incident, reflected, and transmitted beams are, 

respectively, 𝐴𝑐𝑜𝑠𝜃𝑖, 𝐴𝑐𝑜𝑠𝜃𝑟, and 𝐴𝑐𝑜𝑠𝜃𝑡. Accordingly, the incident power is 𝐼𝑖𝐴𝑐𝑜𝑠𝜃𝑖; this is the 

energy per unit time flowing in the incident beam, and it’s therefore the power arriving on the surface 

over A. Similarly, 𝐼𝑟𝐴𝑐𝑜𝑠𝜃𝑟 is the power in the reflected beam, and 𝐼𝑡𝐴𝑐𝑜𝑠𝜃𝑡 is the power being 

transmitted through A. We define the reflectance R to be the ratio of the reflected power (or flux) to 

the incident power:    

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 1. Reflection and transmission of an 
incident beam. 

       𝑅 =
𝐼𝑟𝐴𝑐𝑜𝑠𝜃𝑟

𝐼𝑖𝐴𝑐𝑜𝑠𝜃𝑖
=

𝐼𝑟

𝐼𝑖
                          (1.45)  

In the same way, the transmittance T is defined as the ratio of 

the transmitted to the incident flux and is given by  

 

          𝑇 =
𝐼𝑡𝑐𝑜𝑠𝜃𝑡

𝐼𝑖𝑐𝑜𝑠𝜃𝑖
                                       (1.46) 

   

The quotient 𝐼𝑟 𝐼𝑖⁄  equals (𝜐𝑟𝜖𝑟𝐸0𝑟
2 2)⁄ / (𝜐𝑖𝜖𝑖𝐸0𝑖

2 2⁄ ), and since 

the incident and reflected waves are in the same medium, 𝜐𝑟 =

𝜐𝑖, 𝜖𝑟 = 𝜖𝑖, and 

         𝑅 = (
𝐸0𝑟

𝐸0𝑖
)

2
= 𝑟2                    (1.47) 



 

In like fashion (assuming 𝜇𝑖 = 𝜇𝑡 = 𝜇0), 

 

       𝑇 =
𝑛𝑡𝑐𝑜𝑠𝜃𝑡

𝑛𝑖𝑐𝑜𝑠𝜃𝑖
 (

𝐸0𝑡

𝐸0𝑖
)

2
= (

𝑛𝑡𝑐𝑜𝑠𝜃𝑡

𝑛𝑖𝑐𝑜𝑠𝜃𝑖
)

2
𝑡2                               (1.48) 

 

where use was made of the fact that 𝜇0𝜖𝑡 = 1 𝜐𝑡
2⁄  and 𝜇0𝜐𝑡𝜖𝑡 = 𝑛𝑡 𝑐⁄ . Notice that at normal incidence, 

which is a situation of great practical interest, 𝜃𝑡 = 𝜃𝑖 = 0, and the transmittance [Eq. (1.46)], like the 

reflectance [Eq. (1.45)], is then simply the ratio of the appropriate irradiances. Observe that in Eq. (1.48) 

𝑇 is not simply equal to 𝑡2, for two reasons. First, the ratio of the indices of refraction must be there, 

since the speeds at which energy is transported into and out of the interface are different, in other 

words, 𝐼 ∝ 𝜐. Second, the cross-sectional areas of the incident and refracted beams are different. The 

energy flow per unit area is affected accordingly, and that manifests itself in the presence of the ratio 

of the cosine terms. 

Let’s now write an expression representing the conservation of energy for the configuration depicted 

in Fig. 1.20. In other words, the total energy flowing into area A per unit time must equal the energy 

flowing outward from it per unit time: 

                 𝐼𝑖𝐴𝑐𝑜𝑠𝜃𝑖 = 𝐼𝑟𝐴𝑐𝑜𝑠𝜃𝑟 + 𝐼𝑡𝐴𝑐𝑜𝑠𝜃𝑡                     (1.49) 

When both sides are multiplied by c, this expression becomes 

               𝑛𝑖𝐸0𝑖
2 𝑐𝑜𝑠𝜃𝑖 = 𝑛𝑖𝐸0𝑟

2 𝑐𝑜𝑠𝜃𝑖 + 𝑛𝑖𝐸0𝑡
2 𝑐𝑜𝑠𝜃𝑡                  

 

Or                     1 = (
𝐸0𝑟

𝐸0𝑖
)

2
+ (

𝑛𝑡𝑐𝑜𝑠𝜃𝑡

𝑛𝑖𝑐𝑜𝑠𝜃𝑖
) (

𝐸0𝑡

𝐸0𝑖
)

2
                           (1.50) 

 

But this is simply 

 

                                             𝑅 + 𝑇 = 1                                    (1.51) 

 



where there was no absorption. 

The electric field is a vector field and, as in the Fresnel analysis, we can again think of light as being 

composed of two orthogonal components whose E-fields are either parallel or perpendicular to the 

plane-of-incidence. In fact, for ordinary “unpolarized” light, half oscillates parallel to that plane and half 

oscillates perpendicular to it. Thus, if the incoming net irradiance is, say, 500 W/m2 the amount of light 

oscillating 

perpendicular to the incident plane is 250 W/m2. It follows from Eqs. (1.47) and (1.48) that 

                                                    𝑅⊥ = 𝑟⊥
2                                        (1.52) 

 

                                            𝑅∥ = 𝑟∥
2                                       (1.53) 

 

                                           𝑇⊥ = (
𝑛𝑡𝑐𝑜𝑠𝜃𝑡
𝑛𝑖𝑐𝑜𝑠𝜃𝑖

) 𝑡⊥
2                                (1.54) 

 

                                                           𝑇∥ = (
𝑛𝑡𝑐𝑜𝑠𝜃𝑡
𝑛𝑖𝑐𝑜𝑠𝜃𝑖

) 𝑡∥
2                              (1.55) 

 

                                       𝑅∥ + 𝑇∥ = 1                                  (1.56a) 

    𝑅⊥ + 𝑇⊥ = 1                                   (1.56b) 

Notice that 𝑅⊥is the fraction of 𝑙𝑖⊥ that is reflected, and not the fraction of  𝑙𝑖 reflected. Accordingly, 

both 𝑅⊥ and 𝑅∥ can equal 1, and so the total reflectance for natural light is given by 

                                       𝑅 =
1

2
(𝑅∥ + 𝑅⊥)                      (1.57) 

 

When 𝜃𝑖 = 0, the incident plane becomes undefined, and any distinction between the parallel and 

perpendicular components R and T vanishes. In this case Eqs. (1.52) through (1.55), 

along with (1.38) and (1.39), lead to 

 



                                      𝑅 = 𝑅∥ = 𝑅⊥ = (
𝑛𝑡−𝑛𝑖

𝑛𝑡+𝑛𝑖
)

2
                      (1.58) 

 

 and                                𝑇 = 𝑇∥ = 𝑇⊥ =
4𝑛𝑡𝑛𝑖

(𝑛𝑡+𝑛𝑖)
2                         (1.59) 

 

Thus 4% of the light incident normally on an air–glass (𝑛𝑔 = 1.5) interface will be reflected back, 

whether internally, 𝑛𝑖 > 𝑛𝑡, or externally, , 𝑛𝑖 < 𝑛𝑡. This will be of concern to anyone who is working 

with a complicated lens system, which might have 10 or 20 such air–glass boundaries. 

 

Problems 1.1 

We can define the deviation angle 𝜃𝑑 for refraction as the angle between the direction of the incident 

ray and the direction of the transmitted ray. What is the deviation angle for a light beam incident 

from air on a sheet of glass (n = 1.6) at an angle of 50°? 

 

 

Problems 1.2 

A beam of light is directed toward the water surface (n = 1.33) from below. The beam is incident at 

the water- air interface at 20°. At what angle will it emerge into the air? 

 

Problems 1.3 

Show that the two rays that enter the system in Fig. P.4.39 parallel to each other emerge from it 

being parallel.  (start from Eq.1.31) 



 

Problems 1.4 

A linearly polarized lightwave moving through air impinges at 20° on a plate of glass (n = 1.62) such that 

its electric vector is perpendicular to the plane of incidence. Compute the amplitude reflection and 

transmission coefficients at this interface. 
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