
If an applied force  is in the same direction as the displacement  , 

then  = 0 and cos 0 = 1. In this case, equation (7.1) gives: 

The units of work are those of force multiplied by those of length. 

Therefore, the SI unit of work is the newton . meter (N . m = kg . m2/s2). 

This combination of units is given a name, the joule (J). 

Work is an energy transfer. If W is the work done on a system and 

W is positive, energy is transferred to the system; if W is negative, 

energy is transferred from the system. 

7.2 Work Done by a Varying Force 

Consider a particle being displaced along the x - axis under the 

action of a force that varies with position. The particle is displaced in the 

direction of increasing x from x = xi to x = xf . In such a situation, we 

cannot use (W = F r cos ) to calculate the work done by the force 

because this relationship applies only when  is constant in magnitude 

and direction. If, however, we imagine that the particle undergoes a very 

small displ x, the x component Fx of the force is approximately 

constant over this small interval; for this small displacement, we can 

approximate the work done on the particle by the force as: 

 Fx x 

Which is the area of the shaded rectangle in the figure a. If we imagine 

the Fx versus x curve divided into a large number of such intervals, the 

total work done for the displacement from xi to xf is approximately equal 

to the sum of a large number of such terms: 



 
 

Therefore, we can express the work done by Fx on the particle as it moves 

from xi to xf as: 

                                                                    (7.2) 

 

This equation reduces to equation (7.1) when the component Fx = F cos  

remains constant. 

 

 

Work done by a spring 

A model of a common physical system on which the force varies 

with position is shown in the figure.  

The system is a block on a frictionless, horizontal surface and 

connected to a spring. For many springs, if the spring is either stretched 

or compressed a small distance from its unstretched (equilibrium) 

configuration, it exerts on the block a force that can be mathematically 

modeled as: 

 

                            Spring force  ( )                    (7.3) 

 

Where x is the position of the block relative to its equilibrium (x = 0) 

position and k is a positive constant called the force constant or the 

spring constant of the spring. 



 
 

                      

 

 The force required to stretch or compress a spring is proportional to 

the amount of stretch or compression x. This force law for springs 

is known as  

The value of k is a measure of the stiffness of the spring. Stiff springs 

have large k values, and soft springs have small k values. The units of k 

are N/m.  

 The negative sign in equations (7.3) signifies that the force exerted 

by the spring is always directed opposite the displacement from 

equilibrium.  



 
 

 When x  0 as in the (figure a) so that the block is to the right of 

the equilibrium position, the spring force is directed to the left, in 

the negative x direction. When x  0 as in the (figure c), the block 

is to the left of equilibrium and the spring force is directed to the 

right, in the positive x direction. When x = 0 as in the (figure b), the 

spring is unstretched and Fs = 0. Because the spring force always 

acts toward the equilibrium position (x = 0), it is sometimes called 

a restoring force. 

 The work Ws done by the spring force on the block as the block 

moves from xi = - xmax to xf = 0: 

                           Ws =             (7.4) 

The work done by the spring force is positive because the force is in the 

same direction as its displacement (both are to the right). 

 If the block undergoes a displacement from x = xi to x = xf , the 

work done by the spring force on the block is: 

  

                                   Work done by a spring   (7.5) 

We see that the work done by the spring force is zero for any motion that 

ends where it began (xi = xf). 

Example (7.1): 

A spring is hung vertically, and an object of mass m is attached to its 

lower end. The spring stretches a distance d from its equilibrium position. 

(A) If a spring is stretched 2 cm by a suspended object having a 

mass of 0.55 kg, what is the force constant of the spring? 

(B) How much work is done by the spring on the object as it 

stretches through this distance? 

Solution: 

 (A) Because the object is in equilibrium, the net force on it is zero and 

the upward spring force balances the downward gravitational force. 



 
 

 

 

Fs = kd and solve for k: 

 

 

( B) To find the work done by the spring on the object: 
 

 
 
 

7.3 Kinetic Energy and the Work Kinetic Energy Theorem 
 

Consider a system consisting of a single object. The figure shows a 

block of mass m moving through a displacement directed to the right 

under the action of a net force   , also directed to the right. We know 

 the block moves with an acceleration  . 

If the block and (therefore the force) moves through a displacement 

 the net work done on the block by the external net 

force   is:  

                         (7.6) 

 

 

 the magnitude of the net force  . 

 

 
 

                      (7.7) 

Where vi is the speed of the block when it is at x = xi and vf is its speed at 
xf . 



 
 

 The quantity (  mv2) represents the energy associated with the 

motion of the particle and it is called (Kinetic energy). 
    

  Kinetic energy                  (7.8) 
 

 Kinetic energy is a scalar quantity and has the same units as work. 

 Equation 7.7 states that the work done on a particle by a net force  

 acting on it equals the change in kinetic energy of the particle. It 

is often convenient to write equation 7.7 in the form: 

                                                                            (7.9) 

 

Another way to write it is                  which tells us that the final 

kinetic energy of an object is equal to its initial kinetic energy plus the 

change in energy due to the net work done on it. 

Equation 7.9 is an important result known as the 

 Work kinetic energy theorem: (When work is done on a system and 

the only change in the system is in its speed, the net work done on the 

system equals the change in kinetic energy of the system). 

 The work kinetic energy theorem indicates that the speed of a 

system increases if the net work done on it is positive because the 

final kinetic energy is greater than the initial kinetic energy. The 

speed decreases if the net work is negative because the final kinetic 

energy is less than the initial kinetic energy. 

Example (7.2): 

A 6.0-kg block initially at rest is pulled to the right along a 

frictionless, horizontal surface by a constant horizontal force of 12 N. 

 

 

 



 
 

Solution:  

The normal force balances the gravitational force 

 on the block, and neither of these vertically acting 

 forces does work on the block because their points 

 of application are horizontally displaced. 

The net external force acting on the block is the horizontal 12-N force. 

Use the work kinetic energy theorem for the block, noting that its initial 

kinetic energy is zero:  

 

 

 

 

 

Example (7.3): 

A man wishes to load a refrigerator onto a truck using a ramp at angle 

 as shown in the figure. He claims that less work would be required to 

load the truck if the length L of the ramp were increased. Is his claim 

valid?  

Solution: 

The normal force exerted by the 

 ramp on the system is directed  

at 90  to the displacement of its point of application and so does no work 

on the system. Because K = 0, the work kinetic energy theorem gives: 

 

The work done by the gravitational force equals the product of             

[the weight (mg) of the system, the distance (L) through which the 

refrigerator is displaced, and cos (  + 90 )]. Therefore, 



 
 

 

Where (h = L sin  is the height of the ramp. Therefore, the man must do 

the same amount of work (mgh) on the system regardless of the length of 

the ramp. The work depends only on the height of the ramp. 

7.4  Power 

The time rate at which work is done by a force is said to be the 

power due to the force. If a force does an amount of work W in an 

t, the average power due to the force during that time 

interval is: 

 

The SI unit of power is joules per second (J/s), also called the watt (W)  

 

 

Another unit of power is horsepower (hp):            1 hp = 746 W 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 8 
(Conservation of Energy) 

 
8.1 Potential Energy of a System 

  
We call the energy storage mechanism before the object is released 

potential energy. The amount of potential energy in the system is 

determined by the configuration of the system. The work represents a 

transfer of energy into the system and the system energy appears in a 

different form, which we have called potential energy. Therefore, we can 

identify the quantity (mgy) as the gravitational potential energy Ug: 

Ug = mgy    Gravitational potential energy         (8.1) 

Where (y) is the height above the ground. 

The units of gravitational potential energy are joules, the same as the 

units of work and kinetic energy. Potential energy, like work and kinetic 

energy, is a scalar quantity. 

8.2   Conservative and Non-conservative Forces 

Conservative Forces 

Conservative forces have these two equivalent properties: 

1. The work done by a conservative force on a particle moving between 

any two points is independent of the path taken by the particle. 

2. The work done by a conservative force on a particle moving through 

any closed path is zero. (A closed path is one for which the beginning 

point and the endpoint are identical.) 

The gravitational force is one example of a conservative force; the force 

that an ideal spring exerts on any object attached to the spring is another. 

Non conservative Forces 


