
A force is non-conservative if it does not satisfy properties 1 and 2 for 

conservative forces. We define the sum of the kinetic and potential 

energies of a system as the mechanical energy of the system: 

Emech = K + U                  (8.2) 

Where K is the kinetic energy of the system and U is the potential energy 

in the system. 

The force of kinetic friction is a non-conservative force. 

8.3 Relationship between Conservative Forces and 
Potential Energy 

A potential energy function U is defined as (the work done within the 

system by the conservative force equals the decrease in the potential 

energy of the system). 

The work done by the force F as the particle moves along the x axis is: 

 (8.3) 

Where Fx is the component of  in the direction of the displacement. 

We can also express equation (8,3) as: 

We can then define the potential energy function as: 

The value of Ui is often taken to be zero. 



 
 

 Therefore, the conservative force is related to the potential energy 

function through the relationship: 

 
 Relationship between Conservative Forces        

8.4) 
 and Potential Energy 

                                                                                                      

 The potential energy for a spring is: 

                                Elastic potential energy                       (8.5) 

 

The elastic potential energy of the system can be thought of as the energy 

stored in the deformed spring (one that is either compressed or stretched 

from its equilibrium position). The elastic potential energy stored in a 

spring is zero whenever the spring is undeformed (x = 0). Energy is 

stored in the spring only when the spring is either stretched or 

compressed. Because the elastic potential energy is proportional to x2, we 

see that Us is always positive in a deformed spring. 

 In the case of the deformed spring: 
 

 

This is corresponding to the restoring force i 

                  Fs = - k x                                   

8.4   Potential Energy Diagram 

Consider the potential energy function for a block spring system, given 

by:  

This function is plotted versus x in the figure. The force Fs exerted by the 

spring on the block is related to Us through equation: 

                                                             (8.6) 
 

 



 
 

This means that the x component of the force  

is  equal to the negative of the slope of the 

 Us versus x curve. 

 

 

 

8.5 Conservation of Energy 

The general statement of the principle of conservation of energy can be 

described mathematically with the conservation of energy equation as 

follows:  

                                                                (8.7) 
 

Where Esystem is the total energy of the system, including all methods of 

energy storage (kinetic, potential, and internal), and T (for transfer) is the 

amount of energy transferred across the system boundary by some 

mechanism. 

We can express the conservation of energy of the system as: 
                     

                                                               (8.8) 
 

 
 
            
 Or              
     (8.9) 
 
 
Example (8.1): 

A ball of mass m is dropped from a height h above the ground as shown 

in the figure. 

(A) Neglecting air resistance, determine the speed of the ball when it is at 

a height y above the ground.  

Solution: (A)   At the instant the ball is released, its kinetic energy is  



 
 

Ki = 0 and the gravitational potential energy of the system is Ugi = mgh. 

When the ball is at a position y above the ground, its kinetic energy is  

Kf = 1/2 mvf
 2 

and the potential energy relative to  the ground  is  

Ugf = mgy. 

Apply equation (8.9): 

 

(B): Determine the speed of the ball at y if at the instant of release it 

already has an initial upward speed vi at the initial altitude h. 

Solution: 
 

In this case, the initial energy includes kinetic energy equal to 1/2 mvi
2. 

 
 

 

 



 
 

Chapter 9 

(Linear Momentum and Collisions) 

9.1 Linear Momentum  

Consider an isolated system of two particles as in the figure, with 

masses m1 and m2 moving with velocities 1 and 2 at an instant of time. 

Because the system is isolated, the only force on one particle is that from 

the other particle. If a force from particle 1 (for example, a gravitational 

force) acts on particle 2, there must be a second force equal in 

magnitude but opposite in direction that particle 2 exerts on particle 1. 

That is, the forces on the particles form  

reaction pair, and 12 = - 21.  

We can express this condition as: 

12 + 21 = 0 

The interacting particles in the system have accelerations 

 corresponding to the forces on them.  

Therefore, replacing the force on each particle with m1   

for the particle gives: 

m1 1 +m2 2 = 0 

Now we replace each acceleration with its definition: 

 

If the masses m1 and m2 are constant, we can bring them inside the 

derivative operation, which gives: 

 

 

                                                                        (9.1) 



 
 

Notice that the derivative of the sum m1 1 + m2 2 with respect to time is 

zero. Consequently, this sum must be constant.  

We call the quantity m  of a particle as (linear momentum). 

 The linear momentum of a particle or an object that can be 

modeled as a particle of mass m moving with a velocity  is 

defined to be the product of the mass and velocity of the particle: 

 = m     linear momentum                 (9.2) 

 Linear momentum is a vector quantity because it equals the 

product of a scalar quantity m and a vector quantity  . Its direction 

is along , and its SI unit is kg . m/s. 

 

momentum of a particle to the resultant force acting on the particle. 

acceleration: 

 

m is assumed to be constant. 

Therefore, we can bring m inside the derivative operation to give us: 

 

                           for a particle   (9.3) 

 

This equation shows that the time rate of change of the linear 

momentum of a particle is equal to the net force acting on the 

particle. 

 Using the definition of momentum, equation (9.1) can be written: 

 

Because the time derivative of the total momentum tot = 1+ 2 is zero, 

we conclude that the total momentum must remain constant: 



 
 

tot = constant                                       (9.4) 

or, equivalently,    1i+ 2i = 1f+ 2f                            (9.5) 

9.2 Impulse 

Let us assume a net force  acts on a particle and this force may 

,  = d  /dt, or 

d  =  dt                 (9.6) 

We can integrate this expression to find the change in the momentum of a 

particle when the force acts over some time interval.  

If the momentum of the particle changes from i at time ti to f at time tf , 

integrating equation (9.6) gives: 

 = f - i =             (9.7) 

 The quantity on the right side of this equation is a vector called the 

impulse of the net force  acting on a particle over the time 

interval  t = tf - ti :   

 =                     Impulse of a force        (9.8) 

From its definition, we see that impulse is a vector quantity having a 

magnitude equal to the area under the force time curve as described in 

the figure.  

 The direction of the impulse vector is the  

same as  the direction of the change  

in momentum.  

 Impulse has the dimensions of momentum. 

 Impulse is not a property of a particle; 

 it is a measure of the degree to which an external 

 .  

 Combining equations (9.7) and (9.8) gives us an important 

statement known as the 



 
 

 Impulse momentum theorem: 

(The change in the momentum of a particle is equal to the impulse of the 

net force acting on the particle):           

 =    Impulse momentum theorem for a particle         (9.9) 

This statement is equivalen

an impulse is given to a particle, we mean that momentum is transferred 

from an external agent to that particle. 

 Equation (9.9) is the most general statement of the principle of 

conservation of momentum and is called the conservation of 

momentum equation. The conservation of momentum equation is 

often identified as the special case of equation (9.5). 

9.3 Collisions 

Collisions in One Dimension 

The term collision represents an event during which two particles come 

close to each other and interact by means of forces. 

A collision may involve physical contact between two macroscopic 

objects as described in figure (a).  

To understand this concept, consider a collision on 

 an atomic scale as in the figure (b) such as the  

collision of a proton with an alpha particle  

(the nucleus of a helium atom). Because the particles  

 are both positively charged, they repel each other due  

to the strong electrostatic force between them at close separations and 

 

 Collisions are categorized as being either elastic or inelastic 

depending on whether or not kinetic energy is conserved. 

 An elastic collision between two objects is one in which the total 

kinetic energy (as well as total momentum) of the system is the 



 
 

same before and after the collision. Elastic collisions occur 

between atomic and subatomic particles. There must be no 

transformation of kinetic energy into other types of energy within 

the system. 

 An inelastic collision is one in which the total kinetic energy of 

the system is not the same before and after the collision (even 

though the momentum of the system is conserved).  

Inelastic collisions are of two types. When the objects stick together after 

they collide, as happens when a meteorite collides with the Earth, the 

collision is called perfectly inelastic. When the colliding objects do not 

stick together but some kinetic energy is transformed or transferred away, 

as in the case of a rubber ball colliding with a hard surface, the collision 

is called inelastic. 

Perfectly Inelastic Collisions 

Consider two particles of masses m1 and m2 moving with initial 

velocities 1i and 2i along the same straight line as shown in the figure. 

The two particles collide head-on, stick together, and then move with 

some common velocity f after the collision.   

Because the momentum of an isolated system is  

conserved in any collision, we can say that the total 

 momentum before the collision equals the total 

 momentum of the composite system after the collision: 

                                            (9.10) 

 

                                              (9.11) 

 

Elastic Collisions 

Consider two particles of masses m1 and m2 moving with initial 

velocities 1i and 2i along the same straight line as shown in the figure. 


