
The two particles collide head-on and then leave the collision site with 

different velocities, 1f and 2f. In an elastic collision, both the momentum 

and kinetic energy of the system are conserved. 

(9.12) 

(9.13) 

(9.14) 

Let us separate the terms containing m1 and m2 in equation (9.12) 

to obtain:  

(9.15) 

 To obtain final result, we divide equation 9.14 by equation 9.15 

and obtain:      

(9.16) 

According to equation (9.16), the relative velocity of the two particles 

before the collision, v1i - v2i, equals the negative of their relative velocity 

after the collision, - (v1f - v2f). 

Suppose the masses and initial velocities of both particles are known. 

Equations (9.12) and (9.16) can be solved for the final velocities in terms 

of the initial velocities because there are two equations and two 

unknowns:  

(9.17) 

(9.18) 

Let us consider some special cases. If m1 = m2, equations 9.17 and 9.18 

show that v1f = v2i and v2f = v1i, which means that the particles exchange 

velocities if they have equal masses. That is approximately what one 

observes in head-on billiard ball collisions: the cue ball stops and the 



 
 

struck ball moves away from the collision with the same velocity the cue 

ball had. 

If particle 2 is initially at rest, then v2i = 0, and equations 9.17 and 9.18 

become: 

(9.19) 

 

(9.20) 

 

Example (9.1): 

A 1 800-kg car stopped at a traffic light is struck from the rear by 

 a 900-kg car. The two cars become entangled, moving along the same 

path as that of the originally moving car. If the smaller car were moving 

at 20.0 m/s before the collision, what is the velocity of the entangled cars 

after the collision? 

Solution: 

that the collision is perfectly 

inelastic. The magnitude of the total momentum of the system before the 

collision is equal to that of the smaller car because the larger car is 

initially at rest. 

Set the initial momentum of the system equal to the final momentum of 

the system:  

 

 

 

Because the final velocity is positive, the direction of the final velocity of 

the combination is the same as the velocity of the initially moving car. 

The speed of the combination is also much lower than the initial speed of 

the moving car. 



 
 

Example (9.2): 

A block of mass m1 = 1.60 kg initially moving to the right with a speed of 

4m/s on a frictionless, horizontal track collides with a light spring 

attached to a second block of mass m2 = 2.10 kg initially moving to the 

left with a speed of 2.50 m/s as shown in the figure a. The spring constant 

is 600 N/m. 

(A) Find the velocities of the two blocks after the collision. 

Solution: 

 

 

 

 

 

Because the spring force is conservative, kinetic energy in the system of 

two blocks and the spring is not transformed  to internal energy during 

the compression  of the spring. The collision is elastic. 

Because momentum of the system is conserved, apply equation 9.12: 
 
           m1v1i + m2v2i = m1v1f + m2v2f           (1) 
 
Because the collision is elastic, apply equation 9.16: 
 
        v1i - v2i = - (v1f   v2f )       (2) 
 
Multiply equation (2) by m1:      m1v1i  m1v2i = - m1v1f  + m1v2f        (3) 
 
Add equations (1) and (3): 

 



 
 

(C) Determine the velocity of block 2 during the collision, at the 

instant block 1 is moving to the right with a velocity of 13m/s as 

in figure b. 

Solution: 

Apply equation 9.12:           m1v1i + m2v2i = m1v1f + m2v2f 

Solve for v2f :       

 

The negative value for v2f means that block 2 is still moving to the left. 

(D) Determine the distance the spring is compressed at that instant. 

Solution: 

Write a conservation of mechanical energy equation for the system: 
 

Ki + Ui = Kf + Uf 
 
Evaluate the energies, recognizing that two objects in the system have 

kinetic energy and that the potential energy is elastic: 

 

 

 

 

 

 

 

Collisions in Two Dimensions 

The game of billiards is a familiar example involving multiple 

collisions of objects moving on a two-dimensional surface. For such two-

dimensional collisions, we obtain two component equations 



 
 

for conservation of momentum: 

 

 

Where the three subscripts on the velocity components in these equations 

represent, respectively, the identification of the object (1, 2), initial and 

final values (i, f ), and the velocity component (x, y). 

Let us consider a specific two-dimensional problem in which particle 1 of 

mass m1 collides with particle 2 of mass m2 initially at rest as in the 

figure. After the collision (Fig. b), particle 1 moves at an angle  with 

respect to the  horizontal and particle 2 moves at an angle  with respect 

to the horizontal. This event is called a glancing collision.  

Applying the law of conservation of momentum in component form and 

noting that the initial y component of the momentum of the two-particle 

system is zero gives:  

 

           (9.21) 

            (9.22) 

Where the minus sign in equation 9.22 is included 

 because after the collision particle 2 has 

 a y component of velocity that is downward. 

If the collision is elastic, we can also use  

equation 9.13 (conservation of kinetic energy) 

 with v2i = 0: 

        (9.23) 

 



 
 

If the collision is inelastic, kinetic energy is not conserved and equation 

(9.23) does not apply. 

Example (9.3): 

A proton collides elastically with another proton that is initially at rest. 

The incoming proton has an initial speed of (3.50  ) m/s and makes 

a glancing collision with the second proton as in the figure. After the 

collision, one proton moves off at an angle =37  to the original 

direction of motion and the second deflect at an angle  to the same axis.  

Find the final speeds of the two protons and the angle . 

Solution: 

Both momentum and kinetic energy of the system are conserved in this 

glancing elastic collision. 

Use equation (9.21) through equation (9.23) gives:  

                                         (1) 

                                           (2) 

                                             (3) 

Rearrange equations (1) and (2): 

 

Square these two equations and add them: 

 

Since   +  =1  

                                                                            (4) 

 

Substitute equation (4) into equation (3): 

 
                                                                            (5) 



 
 

One possible solution of equation (5) is v1f = 0, which corresponds to a 

head-on, one-dimensional collision in which the first proton stops and the 

second continues with the same speed in the same direction.                 

That is not the solution we want. 

Divide both sides of equation (5) by v1f and solve for the remaining factor 

of v1f : 

Use equation (3) to find v2f :  

 

 

Use equation (2) to find  : 

 

It is interesting that  +  = 90 . This result is not accidental. Whenever 

two objects of equal mass collide elastically in a glancing collision and 

one of them is initially at rest, their final velocities are perpendicular to 

each other. 

9.3 The Center of Mass 

We describe the overall motion of a system in terms of a special 

point called the center of mass of the system. The system can be a group 

of particles, such as a collection of atoms in a container. 

Consider a system consisting of a pair of particles that have 

different masses and are connected by a light, rigid rod as shown in the 

figure. 

The position of the center of mass of a system can be described as being 

the average position of the 

system is located somewhere on the line joining the two particles and is 

closer to the particle having the larger mass.  



 
 

 

 

If a single force is applied at a point on the rod 

 above the center of mass, the system rotates  

clockwise as shown in the figure (a). 

If the force is applied at a point on the rod  

below the center of mass, the system rotates  

 counterclockwise  as shown in the figure (b). 

If the force is applied at the center of mass, 

 the system moves in  the direction of the force 

  without rotating as shown in the figure (c). 

 

 

 

 

 

The center of mass of the pair of particles described in the figure 

below is located on the x axis and lies somewhere between the particles.   

Its x coordinate is given by:  

                                                      

                                            (9.24) 

 

 For example, if x1 = 0, x2 = d, and m2 = 2m1, we find that               

xCM = 2/3 d. That is, the center of mass lies closer to the more 

massive particle. If the two masses are equal, the center of mass 

lies midway between the particles. 

 We can extend this concept to a system of many particles with 

masses mi in three dimensions.  



 
 

The x - coordinate of the center of mass of (n) particles is defined 

to be:  

      xCM (9.25) 

 

Where xi is the x coordinate of the ith particle and the total mass is 

M = i 

The center of mass can be located in three dimensions by its position 

vector CM . 

                (9.26) 

Where i is the position vector of the ith particle, defined by: 

 
 We replace the sum by an integral and ( mi ) by the differential 

(dm):       

                       

 

                                                                                   (9.27) 

 

 We can express the vector position of the center of mass: 

 

 (9.28) 

 The center of mass of a uniform rod lies in the rod, midway 

between its ends. The center of mass of a sphere or a cube lies at its 

geometric center. 

 

Example (9.4): 

A system consists of three particles located as shown in the figure. Find 

the center of mass of the system. The masses of the particles are m1 = m2 

= 1.0 kg and m3 = 2.0 kg. 

 


