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THEOREMS ABOUT POWER SERIES

: 1 o . ' '
We have seen that a power series )~ a,2™ converges in some interval with center

at the origin. For each value of x (in the interval of convergence) the series has a
finite sum whose value depends, of course, on the value of x. Thus we can write the
sum of the series as S(z) = Y >  a,z". We see then that a power series (within
its interval of convergence) defines a function of x, namely S{x). In describing the
relation of the series and the function S({x), we may say that the series converges
to the function S{z), or that the function S(x) is represented by the series, or that
the series is the power series of the function. Here we have thought of obtaining
the function from a given series. We shall also (Section 12) be interested in finding
a power series that converges to a given function. When we are working with
power series and the functions they represent, it is useful to know the following
theorems (which we state without proof; see advanced calculus texts). Power series
are very uselul and convenient because within their interval of convergence they can
be handled much like polynomials. 11
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A power series may be dillerentiated or integrated term by term; the resulting
series converges to the derivative or integral of the function represented by the
original series within the same interval of convergence as the original series
(that is, not necessarily at the endpoints ot the interval).

T'wo power series mayv be added, subtracted, or multiplied; the resultant series
converges at least in the common interval of convergence, You may divide two
series if the denominator series is not zero at * = 0, or if it is and the zero
is canceled by the numerator [as, for example, in (sinz)/z; see (13.1)]. The
resulting series will have some interval of convergence (which can be found
by the ratio test or more simply by complex variable theory—see Chapter 2,
Section 7).

One series may be substituted in another provided that the values of the
substituted series arc in the interval of convergence of the other series.

The power series of a function is unigue, that is, there is just one power series
of the form Ef:u ay,r™ which converges to a given function.

12



EXPANDING FUNCTIONS IN POWER SERIES

Very olten in applied work, it is useful to find power series that represent given
functions. We illustrate one method of obtaining such series by finding the series
for sinz. In this method we assume that there is such a series (see Section 14 for
discussion of this point) and set out to find what the coefficients in the series must
be. Thus we write

(12.1) SiNT =ap + @1+ Gox’ + - F @,z +

and try to find numerical values of the coeflicients a, to make (12.1) an identity
(within the interval of convergence of the series). Since the interval of convergence
of a power series contains the origin, (12.1) must hold when = = (. If we substitute
r = 0 into (12.1), we get ) = ag since sin( = 0 and all the terms except ag on the
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right-hand side of the equation contain the factor z. Then to make (12.1) valid at
r = 0, we must have ag = 0. Next we differentiate (12.1) term by term to pet

p

{12.2] COST = iy + 2a.2 + 3asz” + -

(This is justified by Theorem 1 of Section 11.) Again putting x = 0, we get 1 = a;.
We differentiate again, and put £ = 0 to get

sinz = 2a3 + 3 - 2aax + 4+ Jagxz® + -

12.3
{ ] = 2{12.

Continuing the process of taking successive derivatives of (12.1) and putting = = 0,
we get

—cosr =3-2a3+4-3- 20424+,

]
_E ::j! [.]'.31 ﬂ-ﬂ — Fﬁ:
(12.4) sinr=4-3-2 . a4+5-4-3-2asx+ -+,
U = ay;

cost=5H-4-3:2a5+ -
-E=5!ﬂ.51--- .

1

14



We substitute these values back into (12.1) and get

£

|

o
(12.5) sinr =

Bl
3} 5
You can probably see how to write more terms of this series without further com-
putation. The sinx series converges for all z; see Example 3, Section 10.

Series obtained in this way are called Maclourin sertes or Taylor series aboul
the origin. A Taylor series in general means a series of powers of (z —a), where a is
some constant, It is found by writing (x — a) instead of = on the right-hand side of
an equation like (12.1), differentiating just as we have done, but substituting r = a
instead of x = 0 at each step. Let us carry out this process in general for a function
f(xz). As above, we assume that there is a Tavlor series for f(z), and write

(12.6) f(z)=ag+ei(z—a)+as(z—a) +az(z—a)® +as(z —a)* +- -
'8 {Lﬂ{:ﬂ e ﬂ-.}ﬂ' e

f(z) = a1 + 2as(x — a) + 3as(z — a)? + das(z —a)? + - -

Fragles —a)* 1 4o
f'(z) =202+ 3 2a3(x —a) +4 - 3as(z —a)* + -
+a(n—1a(z—a)* 24 .-,

f"(z) =3laz +4-3 2as(x —a) + -
i ﬂ-{ﬂ o IJ(H - 2]&«1’.‘.{1-' — IE-I'-}IEL_3 B

f{nj(iﬂj =n(n—1)(n —-2)---1-a, + terms containing powers of (z — a).
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The symbol f({z) means the nth derivative of f({x).] We now put z = ¢ in each
equation of (12.6) and obtain

f{ﬂ“} = g, .flr[:'ﬂ'] = ay, .fﬁ{ﬂ] i 2'12:

(12.7) :
f"”{ﬂ.} =3laz, -, f’nﬂ]{ﬂ.;l = ¥} .

‘Remember that f'(a) means to differentiate f(x) and then put x = a; f"”(a) means
to find f"(x) and then put x = a, and so on.]

We can then write the Taylor series for f{r) about r = a:

(128) f(z) = f(a) +(@—a)f' (@) + (2 —a)2f"(a) +- - +=(2—a)" F™(a) +---

!

The Maclaurin series for f(x) is the Taylor series about the origin. DPutting
a =0 in (12.8), we obtain the Maclaurin series for f(x):

il 3

. :E'JT.
2! 31 .

fm{m 4 _f[n}{[}}

nl
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~  (2n + 1) 3 "5 T
iIT’E ;E'Jl' iI?E
(13.2) COST = Z EH}T ~ 3 = TR Hr
n=f
oeieh e 1 T 2 s A
T .L'__ X £ wls
(13.3) e_nzzjnl_1+e+21+3!+4l+

convergent for

all x:

all x:

all x;

—L< g1

| <1,

(binomial series: pois any resl number, positive or pegalive and (i) is valled

binomial coefficient—see method C below. )
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