university of Anbar College of Science Physics Department

Mathematical Physics I Lecture 5 Dr. Wissam A. Ameen

Terminology and Notation Formula

TERMINOLOGY AND NOTATION

Both i and j are used to represent $\sqrt{-1}$, j usually in any problem dealing with electricity since i is needed there for current. A physicist should be able to work with ease using either symbol. We shall for consistency use i throughout this book.

(4.1)
$$z = x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}.$$

Here z is a complex number; x is the real part of the complex number z, and y is the imaginary part of z. The quantity r is called the modulus or absolute value of z, and θ is called the angle of z (or the phase, or the argument, or the amplitude of z). In symbols:

(4.2)
$$\begin{aligned} \operatorname{Re} z &= x, & |z| &= \operatorname{mod} z &= r &= \sqrt{x^2 + y^2}, \\ \operatorname{Im} z &= y \, (\mathbf{not} \, iy), & \operatorname{angle of} z &= \theta. \end{aligned}$$

Example. Write z = -1 - i in polar form. Here we have x = -1, y = -1, $r = \sqrt{2}$ There are an infinite number of values of θ ,

$$\theta = \frac{5\pi}{4} + 2n\pi,$$

where n is any integer, positive or negative. The value $\theta = 5\pi/4$ is sometimes called the *principal* angle of the complex number z = -1 - i. Notice carefully, however, that this is not the same as the principal value $\pi/4$ of arctan 1 as defined in calculus. The angle of a complex number must be

in the same quadrant as the point representing the number. For our present work, any one of the values in (4.3) will do; here we would probably use either $5\pi/4$ or $-3\pi/4$. Then we have in our example

$$z = -1 - i = \sqrt{2} \left[\cos \left(\frac{5\pi}{4} + 2n\pi \right) + i \sin \left(\frac{5\pi}{4} + 2n\pi \right) \right]$$
$$= \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) = \sqrt{2} e^{5i\pi/4}.$$

The complex number x - iy, obtained by changing the sign of i in z = x + iy, is called the *complex conjugate* or simply the *conjugate* of z. We usually write the conjugate of z = x + iy as $\overline{z} = x - iy$. Sometimes we use z^* instead of \overline{z} (in fields such as statistics or quantum mechanics where the bar may be used to mean an average value). Notice carefully that the conjugate of 7i - 5 is -7i - 5; that is, it is the i term whose sign is changed.

Complex numbers come in conjugate pairs; for example, the conjugate of 2+3i is 2-3i and the conjugate of 2-3i is 2+3i. Such a pair of points in the complex plane are mirror images of each other with the x axis as the mirror (Figure 4.2). Then in polar form, z and \bar{z} have the same r value, but their θ values are negatives of each other. If we write $z = r(\cos \theta + i \sin \theta)$, then

(4.4)
$$\bar{z} = r[\cos(-\theta) + i\sin(-\theta)] = r(\cos\theta - i\sin\theta) = re^{-i\theta}.$$

For each of the following numbers, first visualize where it is in the complex plane. With a little practice you can quickly find x, y, r, θ in your head for these simple problems. Then

plot the number and label it in five ways as in Figure 3.3. Also plot the complex conjugate of the number.

1.
$$1+i$$

2.
$$i-1$$

3.
$$1 - i\sqrt{3}$$

4.
$$-\sqrt{3}+i$$

9.
$$2i-2$$

10.
$$2-2i$$

11.
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

12.
$$4\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$$

$$13. \quad \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$$

14.
$$2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

15.
$$\cos \pi - i \sin \pi$$

16.
$$5(\cos 0 + i \sin 0)$$

17.
$$\sqrt{2}e^{-i\pi/4}$$

18.
$$3e^{i\pi/2}$$

19.
$$5(\cos 20^{\circ} + i \sin 20^{\circ})$$

20.
$$7(\cos 110^{\circ} - i \sin 110^{\circ})$$

Example 1.

$$(1+i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i$$

To divide one complex number by another, first write the quotient as a fraction. Then reduce the fraction to rectangular form by multiplying numerator and denominator by the conjugate of the denominator; this makes the denominator real.

Example 2.

$$\frac{2+i}{3-i} = \frac{2+i}{3-i} \cdot \frac{3+i}{3+i} = \frac{6+5i+i^2}{9-i^2} = \frac{5+5i}{10} = \frac{1}{2} + \frac{1}{2}i.$$

It is sometimes easier to multiply or divide complex numbers in polar form.

Example 3. To find $(1+i)^2$ in polar form, we first sketch (or picture mentally) the point (1,1), $r=\sqrt{2}$, and $\theta=\pi/4$, so $(1+i)=\sqrt{2}\,e^{i\pi/4}$.

$$(1+i)^2 = (\sqrt{2}e^{i\pi/4})^2 = 2e^{i\pi/2} = 2i.$$

Example 4. Write $1/[2(\cos 20^{\circ} + i \sin 20^{\circ})]$ in x + iy form. Since $20^{\circ} = \pi/9$ radians,

$$\frac{1}{2(\cos 20^{\circ} + i \sin 20^{\circ})} = \frac{1}{2(\cos \pi/9 + i \sin \pi/9)} = \frac{1}{2e^{i\pi/9}} = 0.5e^{-i\pi/9}$$
$$= 0.5(\cos \pi/9 - i \sin \pi/9) = 0.47 - 0.17i,$$

by calculator in radian mode. We obtain the same result leaving the angle in degrees and using a calculator in degree mode: $0.5(\cos 20^{\circ} - i \sin 20^{\circ}) = 0.47 - 0.17i$.

First simplify each of the following numbers to the x + iy form or to the $re^{i\theta}$ form. Then plot the number in the complex plane.

1.
$$\frac{1}{1+i}$$

2.
$$\frac{1}{i-1}$$

4.
$$i^2 + 2i + 1$$

5.
$$\left(i+\sqrt{3}\right)^2$$

6.
$$\left(\frac{1+i}{1-i}\right)^2$$

7.
$$\frac{3+i}{2+i}$$

8.
$$1.6 - 2.7i$$

9.
$$25e^{2i}$$
 Careful! The angle is 2 radians.

10.
$$\frac{3i-7}{i+4}$$
 Careful! Not $3-7i$

11.
$$17 - 12i$$

12.
$$3(\cos 28^{\circ} + i \sin 28^{\circ})$$

13.
$$5\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$$

14.
$$2.8e^{-i(1.1)}$$

15.
$$\frac{5-2i}{5+2i}$$

16.
$$\frac{1}{0.5(\cos 40^{\circ} + i \sin 40^{\circ})}$$

17.
$$(1.7-3.2i)^2$$

18. $(0.64 + 0.77i)^4$

Find each of the following in rectangular (a + bi) form if z = 2 - 3i; if z = x + iy.

19.
$$z^{-1}$$

20.
$$\frac{1}{z^2}$$

21.
$$\frac{1}{z+1}$$

$$22. \quad \frac{1}{z-i}$$

23.
$$\frac{1+z}{1-z}$$

24.
$$z/\overline{z}$$

Complex Conjugate of a Complex Expression

It is easy to see that the conjugate of the sum of two complex numbers is the sum of the conjugates of the numbers. If

$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$,

then

$$\bar{z}_1 + \bar{z}_2 = x_1 - iy_1 + x_2 - iy_2 = x_1 + x_2 - i(y_1 + y_2).$$

The conjugate of $(z_1 + z_2)$ is

$$\overline{(x_1+x_2)+i(y_1+y_2)}=(x_1+x_2)-i(y_1+y_2).$$

Example. If

$$z = \frac{2 - 3i}{i + 4}$$
, then $\bar{z} = \frac{2 + 3i}{-i + 4}$.

But if z = f + ig, where f and g are themselves complex, then the complex conjugate of z is $\overline{z} = \overline{f} - i\overline{g}$ (not f - ig).

Finding the Absolute Value of z

Recall that the definition of |z| is $|z| = r = \sqrt{x^2 + y^2}$ (positive square root!). Since $z\overline{z} = (x+iy)(x-iy) = x^2 + y^2$, or, in polar coordinates, $z\overline{z} = (re^{i\theta})(re^{-i\theta}) = r^2$, we see that $|z|^2 = z\overline{z}$, or $|z| = \sqrt{z\overline{z}}$. Note that $z\overline{z}$ is always real and ≥ 0 , since x, y, and r are real. We have

(5.1)
$$|z| = r = \sqrt{x^2 + y^2} = \sqrt{z\bar{z}}.$$

Example.

$$\left| \frac{\sqrt{5} + 3i}{1 - i} \right| = \frac{|\sqrt{5} + 3i|}{|1 - i|} = \frac{\sqrt{14}}{\sqrt{2}} = \sqrt{7}.$$

Find the absolute value of each of the following using the discussion above. Try to do simple problems like these in your head—it saves time.

26.
$$\frac{2i-1}{i-2}$$

27.
$$\frac{2+3i}{1-i}$$

28.
$$\frac{z}{\overline{z}}$$

29.
$$(1+2i)^3$$

30.
$$\frac{3i}{i-\sqrt{3}}$$

31.
$$\frac{5-2i}{5+2i}$$

32.
$$(2-3i)^4$$

33.
$$\frac{25}{3+4i}$$

$$34. \quad \left(\frac{1+i}{1-i}\right)^5$$

Complex Equations

Example. Find x and y if

$$(5.2) (x+iy)^2 = 2i.$$

Since $(x+iy)^2 = x^2 + 2ixy - y^2$, (5.2) is equivalent to the two real equations

$$x^2 - y^2 = 0,$$

$$2xy = 2$$
.

From the first equation $y^2 = x^2$, we find y = x or y = -x. Substituting these into the second equation gives

$$2x^2 = 2$$
 or $-2x^2 = 2$.

Since x is real, x^2 cannot be negative. Thus we find only

$$x^2 = 1$$
 and $y = x$,

that is,

$$x = y = 1$$
 and $x = y = -1$.

Solve for all possible values of the real numbers x and y in the following equations.

35.
$$x + iy = 3i - 4$$

37.
$$x + iy = 0$$

39.
$$x + iy = y + ix$$

41.
$$(2x-3y-5)+i(x+2y+1)=0$$

43.
$$(x+iy)^2 = 2ix$$

45.
$$(x+iy)^2 = (x-iy)^2$$

47.
$$(x+iy)^3=-1$$

49.
$$|1 - (x + iy)| = x + iy$$

36.
$$2ix + 3 = y - i$$

38.
$$x + iy = 2i - 7$$

40.
$$x + iy = 3i - ix$$

42.
$$(x+2y+3)+i(3x-y-1)=0$$

44.
$$x + iy = (1 - i)^2$$

$$46. \quad \frac{x+iy}{x-iy} = -i$$

48.
$$\frac{x+iy+2+3i}{2x+2iy-3} = i+2$$

50.
$$|x + iy| = y - ix$$

References

- 1. Boas, Mary L. *Mathematical methods in the physical sciences*. John Wiley & Sons, 2006.
- 2. Arfken George, Hans J. Weber, and F. Harris. "Mathematical Methods for Physicists. A Comprehensive Guide." (2013).