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EULER'S FORMULA

For real #, we know from Chapter 1 the power series for sinf and cos #:
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From our definition (8.1), we can write the series for e to any power, real or imagi-
nary. We write the series for €', where 6 is real:
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Examples. Find the values of 2¢'™/6, '™ 3¢ '7/2 e2nmi

2e'"/6 is re® with r = 2, @ = 7/6. From Figure 9.1,
x=\/§,y=1,x+iy=\/§+i,so2e“’/6=\/§+i.

e'™ is re? withr = 1, § = 7. From Figure 9.2, z = —1,
y=0,z41iy = —1+0i,s0 e™ = —1. Note that r = 1 and
f = —m, £3m, +57, - - -, give the same point, so e " = —1,
e3™ = —1, and so on.
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e?" ig re' with r = 1 and 8 = 2n7 = n(2n); that is, Y|
A is an integral multiple of 27. z = 1,

y=0,50 "™ =1+0i=1. /f'*‘\

= Znnx
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It is often convenient to use Euler’s formula when we want to multiply or divide
complex numbers. From (8.2) we obtain two familiar looking laws of exponents
which are now valid for imaginary exponents:
iy
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Remembering that any complex number can be written in the form re® by (9.4),
we get

b 4
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In words, to multiply two complex numbers, we multiply their absolute values
and add their angles. To divide two complex numbers, we divide the absolute
values and subtract the angles.
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POWERS AND ROOTS OF COMPLEX NUMBERS

Using the rules (9.6) for multiplication and division of complex numbers, we have
(10.1) 5T {reiﬂ]ﬂ- _ pngind

for any integral n. In words, to obtain the nth power of a complex number, we take
the nth power of the modulus and multiply the angle by n. The case r = 1 is of
particular interest. Then (10.1) becomes DeMoivre’s theorem:

(10,2) (" = (cosf + isinf)" = cosnd + isinnf.

You can use this equation to find the formulas for sin 26, cos 26, sin 36, etc. (Prob-
lems 27 and 28).

The nth root of z, z!/™, means a complex number whose nth power is z. From
(10.1) vou can see that this is

- 7} f
(10.3) U = ()P = plR¥in — uf (ms = + i sin ;) ,
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Example 1.

[cos(7/10) + isin(n/10)]%° = (&™) % = 2™e™/2 = 1 . { =,

66



THE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

Although we have already defined e* by a power series (8.1), it is worth while to
write it in another form. By (8.2) we can write

(11.1) e? =" TW = %" = e¥(cosy + isiny).

This is more convenient to use than the infinite series if we want values of * for
given z. For example,

EE—i?r s {_.,EE—'-LI‘TT - EE . {_1‘} - _EE

This is more convenient to use than the infinite series if we want values of % for
given z. For example,

e’ —gle ' = . (—1) = —&° ~



-

(11.2)

€ = cosf + isin,

e ® = cosf — isin.
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Example 1, cosi = = = 1.543 w5,
2 2
Example 2.
T Filffr,."ﬂ-l—i In2) E—ﬂi{'rrl.-“E—Hln 2)
sin [ —+1 111'2) = = :
(2 21
Eml.n"EE— In2 _ ,—wr/2,ln2
= by (8.2).
7 y (8.2)
From Figures 5.2 and 9.3, /2 = i, and e~""/2 = —i. By the definition of Inz

lor see equations (13.1) and (13.2)], e*? = 2,50 ¢~ 172 = 1/¢!2 = 1/2. Then

oy G +“ﬂ?) B {i}(]ﬁ}g:i (—i)(2) %
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Example 3.

Example 4.

Prove that sin® z + cos® z = 1.

2 EE'.',E 2 |. E—Elz
sin” z = — .
1 ;
zz } gtz E,E-iz L2 E—Eiz
cos” z = = 1 ;

2 2

zam*az—:—m%"jz—— - .
4 4

Using the definitions (11.4), verify that (d/dz)sinz = cos z.

_ et — g™ ®
sinz = ,
2t
d I ... e et? | g2
—sinz = —(1e" +1e” ") = . = (0S8 2.
dz 21 2
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HYPERBOLIC FUNCTIONS
Let us look at sinz and cos z for pure imaginary z, that is, z = wy:

p oo Bt el gTi
sinty = —— =1 ——F5—,
_ e ¥+e¥ e¥+4e™
Cos 1Yy = = :
2 2

(12.1)

The real [unctions on the right have special names because these particular combi-
nations of exponentials arise frequently in problems. They are called the hyperbolic
sine (abbreviated sinh) and the hyperbolic cosine (abbreviated cosh). Their defini-
tions for all z are
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The other hyperbolic functions are named and defined in a similar way to parallel
the trigonometric unctions:

sinh z 1
tanh z = , cothz = ._
{12 3) cosh z tanh z
' 1 1
sech z = , cschz = — )
cosh z sinh z

(See Problem 38 for the reason behind the term “hyperbolic” functions.)
We can write (12.1) as

sinty = t sinh y.
(19.4) Y Y,
cos iy = coshy.
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Example. You can prove the following formulas

cosh? z — sinh? z = 1 (compare sin® z + cos® z = 1),
d : d .
d—z-coshz—smhz (comparez-cosz- ~ 8in z).
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Problems

Verify each of the following

1.

10.

12.

14.

16.

sin z = sin(x + iy) = sinx coshy + 7 cosz sinhy

cosz = cosx coshy — 1 sinzx sinhy

cosh z = coshx cosy + ¢ sinh z sin y

2 .
cos 2z = cos” 2 — sin

&

cosh 2z = cosh” z + sinh” 2

d z
— cosh z = sinh z

dz

d il
cos z481M z=1-
sintz = 1 sinh 2

taniz = 7 tanh =

L
2

s
sin” 2z

11.

13.

15.

17.

sinh z = sinh z cosy + ¢ coshx siny

sindz =2s8inz cosz

sinh 2z = 2 sinh z cosh z

d :
— o8z = —35inz
dz

2 L
cosh®z —sinh " z=1

& 3 F
cosd3z=4dcos” z—3cosz

sinhiz =1 sin z

tanhiz =i tan z
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LOGARITHMS

In elementary mathematics you learned to find logarithms of positive numbers only;
in fact, you may have been told that there were no logarithms of negative numbers.
This is true if you use only real numbers, but it is not true when we allow complex
numbers as answers. We shall now see how to find the logarithm of any complex
number z # 0 (including negative real numbers as a special case). If

(33.1) -, TE b
then by dehnition

(13.2) w = Inz.

(We use In for natural logarithms to avoid the cumbersome log, and to avoid con-
fusion with logarithms to the base 10.)
We can write the law of exponents (8.2), using the letters of (13.1), as

{133) 2120 = Eiirl L — Euq-}w:a_
Taking logarithms of this equation, that is, using (13.1) and (13.2), we get

(13.4) Inz1z0 = wy +we = Inzy + In 2s.



This is the familiar law for the logarithm of a product, justified now for complex
numbers. We can then find the real and imaginary parts of the logarithm of a
complex number from the equation

(13.5) w=Inz = In(re’) = Lur + Ine* = Lnr + i6,

where Lnr means the ordinary real logarithm to the base e of the real positive
number r.

Since @ has an infinite number of values (all differing by multiples of 27), a complex
number has infinitely many logarithms, differing from each other by multiples of
2mi. The principal value of In z (often written as Ln z) is the one using the principal
value of §, that is 0 < @ < 27. (Some references use —7 < 6 < 7.)
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Example1. Find In(—1). From Figure 9.2, we see that the polar coordinates of the point
z=—larer=1and § =x, —m, 3m, ---. Then,

In(—1) = Ln(l) + (7 £ 2n7) = @7, —im, 37l -+ .

Example 2. Find In(1 + ). From Figure 5.1, for z = 1 + 1, we find r = V2, and 8 =
w/4 + 2nm. Then

In(1 +1) = Lnv2 + i G + zﬂ.'ﬂ') — 0.347 -+ +14 G + Emr) |

Even a positive real number now has infinitely many logarithms, since its angle
can be taken as (0, 2w, —2m, etc. Only one of these logarithms is real, namely the
principal value Lnr using the angle 8 = 0.
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