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INTRODUCTION AND NOTATION

Ify = flx), then dy/dx can be thought of either as the slope of the curvey = f(x) or
as the rate of chanpge of y with respect to . Rates occur frequently in physics; time
rates such as velocity, acceleration, and rate of cooling of a hot body are obvious
examples. There are also other rates: rate of change of volume of a gas with applied
pressure, rate of decrease of the fuel in your automobile tank with distance traveled,
and so on. Equations involving rates (differential equations) often need to be solved
in applied problems. Derivatives are also used in finding maximum and minimum
points ol a curve and in finding the power series of a function. All these applications,
and more, occur also when we consider a function of several variables.

Let z be a function of two variables = and y; we write z = f(z,y). Just as we
think of y = f{x) as a curve in two dimensions, so it is useful to interpret z = f(x,y)
geometrically. If x, gy, z are rectangular coordinates, then for each x. y the equation
gives us a value of z, and so determines a point (z,y,z) in three dimensions. All
the points satisfying the equation ordinarily form a surface in three-dimensional
space (see Figure 1.1). (It might happen that an equation would not be satisfied
by any real points, for example =% + y* + z° = —1, but we shall be interested
in equations whose graphs are real surfaces.] Now suppose T 1s constant; thig:(}k



of a plane ¥ = const. intersecting the sur-
face (see Figure 1.1). The points satisfying
z = flx,y) and x = const. then lie on a
curve (the curve of intersection of the sur-
tace and the x = const. plane; this is AB
in Figure 1.1). We might want the slope,
maximum and minimum points, etc., of this
curve. Since z is a function of y (on this
curve), we might write dz/dy for the slope.
However, Lo show that z is actually a func-

tion of two variables © and y with one ol

them [:::} temporarily a constant, we write
Oz /Oy; we call 9z /0y the partial derivative
of z with respect to y. Similarly, we can

Figure 1.1
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hold y constant and find dz/dx, the partial derivative of z with respect to z. If
these partial derivatives are differentiated further, we write

a Oz 02 = ad iz 32z g 9%z %=

D Or O3 R : =l te,
Ordz Oz dxdy Odzdy Oz dzdy  dz?dy’ e

Other notations are often useful. If z = f(x,y), we may use z, or f, or f; for
df /dz, and corresponding notations for the higher derivatives.
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Example. Given z = f(z,y) = 2%y — €Y, then

%:g—;'—_‘fyzzyif:J:f - ze*Y,
f’ﬂT;y - -fif;y = fyz = 2y2 = [ = 30" — ™ — zye™
ii{ = j: = fiz = 22 = f11 = bzy —y°e”
% = g_;i = fyvy = Zyyy = fomo = —z°€™,
o f = ﬂ = fyse = Zyza = 211 = 6z — 2ye™¥ — ayPe™.

dr?dy  dx? oy
We can also consider functions of more variables than two, although in this case
it is not so easy to give a geometrical interpretation. For example, the temperature
T of the air in a room might depend on the point (z,y, z) at which we measured it
and on the time ¢; we would write T' = T'(z, y, z,t). We could then find, say, d1/dy,
meaning the rate at which 7" is changing with y for ixed x and z at one instant of
time . 83



A notation which is frequently used in applications (particularly thermodynam-
ics) is (dz/dx),, meaning dz/0x when z is expressed as a function of z and y. (Note
two different uses of the subscript y; in the example above, f, meant Jf/dy. A
subsecript on a partial deriative, however, does nof mean another derivative, but
just indicates the variable being held constant in the indicated partial differentia-
tion.) For example, let z = 2® — y*. Then using polar coordinates r and #, (recall
that © = rcosf, y = rsinf, 2° + y* = r?), we can write z in several other ways.
For each new expression let us find dz/dr.

z=12% -y,
i} :
z=r’cos®f — r*sin’ @, == = Er{m}sg § — sin® f),
ar /
3,
z = 2z% — 1° —yi = 21% — 72, (—E) = —2r,
or J _
2= 4y —2° =" — 2, ﬁ = |2,
or 5

These three expressions for dz/dr have different values and are derivatives of three
different functions, so we distinguish them as indicated by writing the second inde-

pendent variable as a subscript. Note that we do not write z(x,y) or z(r,8); z is
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one variable, but it is equal to several different functions. Pure mathematics books
usually avoid the subscript notation by writing, say, z = f(r.8) = g(r,z) = hi{r, y),
te.; then (9z/0r)g can be written as just df/dr, and similarly

Y =% and L -
ar), or ar), or

However, this multiplicity of notation (z = f = ¢ = h, etc.) would be inconve-
nient and confusing in applications where the letters have physical meanings, For
example, in thermodynamics, we might need
(ST) i
_— etc.,
ds /|

dp / dv /| ap /.,
as well as many other similar partial derivatives. Now T means temperature (and
the other letters similarly have physical meanings which must be recognized). If we
wrote T' = A(p,v) = B(v,s) = C(p,u) = D(s,p) and similar formulas for the eight
commonly used quaﬂt-itlcs in thermodynamics, each as functions of pairs from the
other seven, we would not only have an unwieldy system, but the physical meaning

of equations would be lost until we translated them back to standard letters. Thus
the subscript notation is essential.
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The symbol (9z/0r); is usually read “the partial of z with respect to r, with »
held constant.” However, the important point to understand is that the notation
means that z has been written as a function of the variables r and & only, and
then differentiated with respect to r.

A little experimenting with various functions f(z,y) will probably convince you
that (@/0z)(df/0y) = (@/dy)(Af/dx); this is usually (but not always) true in
applied problems. It can be proved (see advanced calculus texts) that if the first and
second order partial derivatives of f are continuous, then 9% f /0 dy and 92 f [0y Ox
are equal. In many applied problems, these conditions are met:; for example, in
thermodynamics they are normally assumed and are called the reciprocity relations.
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Problems

1. Hfu=2x"/(z"+y"), find du/dx, Ou/dy.

2. Ifs=t" find ds/t, 9s/u.

3. Ifz=Invu?+v?+w? find 9z/6u, 8z/0v, 0z/0w.

4. For w =z —y* — 22y + 6, find 8%w/8z* and 3w /8y* at the points where

dw/dx = dw/dy = 0.

5. Forw=8z" +y* — 2xy”, find #w/6x* and §*w/dy” at the points where
dw /Odx = dw/dy = .

6. Foru=e"cosy,

(a) wverify that 8*u/dxdy = 8%u/Bydx;
(b)  wverify that 8*u/dz* + #*u/0y* = 0.

87



* References
1. Boas, Mary L. Mathematical methods in the physical sciences.
John Wiley & Sons, 2006.

2. Arfken George, Hans J. Weber, and F. Harris. "Mathematical
Methods for Physicists. A Comprehensive Guide." (2013).

88



