# Anti-diabetic drugs

Assistant lecturer

Yusof Sh. Dawood

MSc pharmacology & Toxicology



# Endocrine pancreas





# Endocrine pancreas

• **Islets of Langerhans** consist of 4 main cells. regulate glucose, fatty acid & amino acid metabolism

1- Beta cells (70%) secrete Insulin

(↓ glucose) and Amylin

2- Alpha cells (20%) secrete Glucagon

(个 glucose)

3- Delta cells (<10%) secrete somatostatin

4- **F- cell (pp cell)** (2%) secrete pancreatic polypeptide regulate hormones above







# Diabetic mellitus

# Chronic metabolic disorder cc. by high blood glucose

- Clinical features
  - early signs due to high glucose level in blood
  - late signs due to irreversible damage of the blood vessels by consistent high blood glucose.



# Early signs

- Frequent urination. (polyuria)...
- Increased thirst. (polydipsia) ...
- Always feeling hungry. (polyphagia) ...
- Feeling very tired. ...
- Blurry vision. ...
- Slow healing of cuts and wounds. ...
- vaginal infection.



# DIABETES





# Late signs (complications) inversible

- Macrovascular complications (due to damage to large blood vessels) such as atherosclerosis [result from chronic inflammation and injury to the arterial wall in the peripheral or coronary vascular system]
- Microvascular complications ( due to damage to small blood vessels)
- Diabetic Retinopathy (by small blood vessel damage to the back layer of the eye, the <u>retina</u>, leading to progressive loss of vision, even blindness.)
- Diabetic Nephropathy (damage to small blood vessels in the kidneys. This can cause kidney failure, and eventually lead to death.)
- Diabetic Neuropathy (decreased blood flow to nerves by damaging small blood vessels)



## Diabetic mellitus

#### Lab investigation

|     |                                          | Normal               | <u>Pre-diabetic</u> | D.M         |
|-----|------------------------------------------|----------------------|---------------------|-------------|
|     | Fasting 12hr                             | < 100                | 100- 125            | >125 mg /dL |
| (2) | Post prandial (75g glucose)              | < 140                | 140-200             | >200 mg /dL |
| [3] | For control of blood glucose for 3 month | < 6% )<br>Hb+glucon- | 6-6.5 %             | > 6.5 %     |



## Diabetic mellitus

Types of Diabetes

#### 1- Type I (IDDM)

autoimmune disease Ah -> B con -> dest -> V I new in before 30Yr of age < 30 year (ttt) by Insulin

#### 2- Type II (NIDDM)

insulin is not enough or insulin resistance after 30Yr of age

ttt by Oral drug and / or Insulin



ن نها

#### **Beta cell** Ca++ ligand-gated voltage-gated K+ channel Ca++ channel closes K+ channel → membrane depolarization Ca++ entry pancreatic ATP beta cell glucose (metabolism) stimulates glucose exocytosis transporter insulin Problem of Type 1

#### body cell



Problem of Type II



#### **Lines of treatment**



#### Lines of treatment

x Diet Caloric requiement X Inswin 30KCal/Kg X Oral Dry Obese 20 Kcal Kg

# Gluce or 100's Glycemic Index

قحتو کا اِسکر کو ۱۵۵ کے

#### Low GI (<55), Medium GI (56-69) and High GI (70>)

| Grains / Starchs                                                                                      |                                              | Vegetables                                                                                   |                                                          | Fruits                                                                |                                                    | Dairy                                                                                                         |                                                    | Proteins                                                                                               |                                                    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Rice Bran Bran Cereal Spaghetti Corn, sweet Wild Rice Sweet Potatoes White Rice Cous Cous Whole Wheat | 27<br>42<br>42<br>54<br>57<br>61<br>64<br>65 | Asparagus Broccoli Celery Cucumber Lettuce Peppers Spinach Tomatoes Chickpeas Cooked Carrots | 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>33<br>39 | Grapefruit Apple Peach Orange Grape Banana Mango Pineapple Watermelon | 25<br>38<br>42<br>44<br>46<br>54<br>56<br>66<br>72 | Low-Fat Yogurt Plain Yogurt Whole Milk Soy Milk Fat-Free Milk Skim Milk Chocolate Milk Fruit Yogurt Ice Cream | 14<br>14<br>27<br>30<br>32<br>32<br>35<br>36<br>61 | Peanuts Beans, Dried Lentils Kidney Beans Split Peas Lima Beans Chickpeas Pinto Beans Black-Eyed Beans | 21<br>40<br>41<br>41<br>45<br>46<br>47<br>55<br>59 |
| Bread<br>Muesli<br>Baked Potatoes<br>Oatmeal<br>Taco Shells<br>White Bread<br>Bagel, White            | 80<br>85<br>87<br>97<br>100<br>103           | Cooked Carrots                                                                               | 39                                                       |                                                                       |                                                    |                                                                                                               |                                                    |                                                                                                        |                                                    |



#### 2- insulin

peptide hormone of 51 a.a of 2 chains A & B attached by disulfide bonds (after cleaved of C peptide )



**Pro-insulin** 



insulin



- what are the Sources of Insulin?
- animal (beef (-3 a.a); pork (-1 a.a)); immunologic reaction & then resistance.
  - rDNA (genetic engineering)







#### what are the preparations of Insulin ??

| preparations                               | Onset            | Duration | remarks                                |
|--------------------------------------------|------------------|----------|----------------------------------------|
| 1- short acting insulin (regular; soluble) | <b>30min</b> 5.€ | 4-6 hr.  | I.V & s.c. { mostly used in emergency} |
| 2- NPH (protamine ) 1950<br>by Hagidurn    | 1hr              | 12 h     | S.C on y<br>slow onset & long duration |





#### • preparations of Insulin continue...

| preparations                                                        | Onset | Duration | remarks             |
|---------------------------------------------------------------------|-------|----------|---------------------|
| 3- Lispro (monomer switching of lysine then proline) 1996 by Lilly. | 5min  | 3hr      | S.C<br>Rapid acting |
| 4- Aspart (aspart instead of proline ) 2000 by holland              | 5min  | 3hr      | S.C rapid acting    |





#### preparations of Insulin continue...

| preparations                                    | Onset | Duration     | remarks             |
|-------------------------------------------------|-------|--------------|---------------------|
| 5- Glargine (2 arginine a.a with monomer)       | 1-2hr | 16-24<br>hr. | S.C [P] Long acting |
| 6- Insulin zinc suspension (more Zn in hexamer) | 1-2hr | 16-24<br>hr. | S.C<br>Long acting  |







| preparations                       | Onset | Duration | Remarks                      |
|------------------------------------|-------|----------|------------------------------|
| 7- Mixtard (30% regular + 70% NPH) | 30min | 16 hr    | S.C<br>Rapid + long duration |

30% regulare 70% NPH











- How do you administer insulin ??
- **Dose** (starting ) 0.4u-0.5u /kg/day
- method of administration by s.c (unless DKA given IV).

#### e.g. ptn need 60u .. Two strategy:

- 1- 30u long acting once and 10u short acting before each Meal....or
- 2- 40u mixtard at mornings and 20u mixtard at evening.

another Auto-injection pump (lispro or aspart because same physiological secretion of insulin = within 5min)



- who need insulin?
  - 1- Type I
  - 2- Type II (IR, 20% of them need insulin +oral drugs)
  - 3- Type II with stress conditions
    - Surgery
    - Infection
    - pregnancy
  - **4- Diabetic Ketoacidosis**
  - 5- Hyperkalemia (insulin enter K into the cell. You must give Glucose with insulin to avoid hypoglycemia)



#### Insulin side effects

#### ✓ Local:

- 1-SC lipodystrophy Instin Registante
- 2- Allergy & Arthus reaction (deposition of antigen/antibody complexes at localized site)

lipodystrophy

#### Systemic:

1- Hypoglycemia due to too much insulin, too little food.



- 2- Insulin resistance
- 3- Hypokalemia





what is the Insulin resistance?

Insulin resistance: failure of body cell to response to insulin either endogenous or exogenous insulin.

- Can **be sure** by measure insulin in blood ( > normal value 5-15U).
- Causes: either by
  - 1- pre-receptor (antibody to insulin)
  - 2- receptor (down regulation of receptor = Obesity; infection; pregnancy; genetic)
  - 3- post-receptor (problem in tyrosine kinase...)
  - 4- local (change site of administration)
- Management: by Diet; Metformin; insulin sensitizer (TZD)







## 3- Oral Antidiabetic drugs

for type II Diabetic patients

- ✓ sulphonyl urea ✓
- √ meglitinide ✓
- ✓ Biguanide ✓
- ✓ thiozolidendion
  ✓
- √ starch blocker ✓
- √ Na-GLUT2 co- transporter inhibitor



## 1- sulphonyl urea drugs

| generation                    | Drugs                                           | Remarks                                                        |  |
|-------------------------------|-------------------------------------------------|----------------------------------------------------------------|--|
| 1 <sup>st</sup><br>generation | Chloropropamide; tolbutamide                    | Long duration 72hr (hypoglycemia); less potent; adverse effect |  |
| 2 <sup>nd</sup><br>generation | Glibenclamid (Daonil),<br>gliclazid (Diamicron) | 6-12 hr<br>High potent than 1st                                |  |
| 3 <sup>rd</sup><br>generation | Glimepride (Amaryl)                             | More potent;                                                   |  |



#### Sulphonyl urea mechanisms of action

- promote insulin release by blocking of KATP channel
- Reducing serum glucagon levels.
- Increasing binding of insulin to target tissue receptors († insulin sensitivity).



# + BK of ATP Sen K Ch.



sulphonyl urea inhibit K<sub>ATP</sub> → promote insulin release



#### Adverse effect of sulphonyl urea

- hypoglycemia (esp. with 1<sup>st</sup> generation )
- wt gain
- pharmacological failure (exhaustion of beta cells)
- hypersensitivity reaction (sulpha)
- hepatotoxicity



#### **Sulphonylurea Drugs interaction**

# Drugs potentiate the hypoglycemic effect:

- Microsomal enzyme inhibitors.
- β-blockers: ↓ hepatic glycogenolysis
- Salicylates: displacement of sulfonylureas from plasma proteins.

# Drugs antagonize the hypoglycemic effect:

- Microsomal enzyme inducers.
- β-agonists: ↑ hepatic glycogenolysis.
- Thiazides and diazoxide: they open ATP sensitive K+ channels → ↓ insulin release and ↓ peripheral glucose utilization.
- Anti-insulin hormones: e.g. steroids and glucagon.



## 2- Meglitanides



- Repaglinide & Nateglanide
- same mechanism of sulphonyl urea
- But has not sulphonyl gp
- Rapid acting & short duration (therefore take immediately before meal)
- alternative for ptn. has sensitivity for Sulphonyl urea
- main side effect is Hypoglycemia



## 3- Biguanides (metformin)

- mechanism of action of metformin
- ✓ mainly by ↓ intestinal glucose absorption
- ↑ insulin sensitivity

**Biguanides** not cause hypoglycemia because not increase insulin release as sulphonylurea



#### Who take metformin?

- Type II diabetic
- Obesity
- Polycystic ovary syndrome (multiple cyst causes infertility ... 6-10% of women..insulin resistance and high androgen).



#### Adverse effect of metformin?

- GIT upset, abdominal diarrhea, distension.
- Reducing vitamin B12 absorption (megaloblastic anaemia)
- Due to anaerobic glycolysis → lactic acidosis in ptn with renal impairment, old age, with Alcohol

MB: metformin with **iodinated contrast** media is **contraindicated** >>> sever lactic acidosis and acute kidney failure.



#### 3-Thiazolidenediones

insulin sensitizer rosiglitazone; pioglitazone

These drugs activate **Peroxisome**proliferator-activated receptor delta

(PPARδ) >> DNA transcription >>

produce more GLUT4 receptors >>
increase insulin mediated glucose
uptake by adipocyte







#### **Adverse effect of Thiazolidinedione**

- hepatotoxic
- fluid retention (CHF)
- wt. gain
- rosiglitazone → fracture of upper limb



# 4- α-Glucosidase Inhibitors

Acarbose



Inhibition of a-glucosidase reduces postprandial rise of glucose resulting in an insulin sparing action.

#### **Adverse effect**

Flatulence (20-30%, caused by lower bowel undigested carbohydrate).



Glucobay 100

# 5- Na-GLUT2 co- transporter inhibitor Canagliflozin & Dapagliflozin .

Inhibit **SGLT2** in proximal tubules  $\rightarrow$  \precipres transfer to the proximal tubules  $\rightarrow$  \precipres blood glucose.

#### **Adverse effect**

Polyuria, UTI, Hypotension &

?? Bladder cancer









# New Antidiabetic drugs

- √incretin mimetic drugs
- **✓ DPP-4** inhibitor drugs
- √ amylin analogue



# Incretin peptides secreted from SI in response to CHO and stimulate beta cell to release insulin and inhibit glucagon and inhibit appetite and slows gastric emptying e.g Glucagon like peptide-1





# 1-Incretin mimetic

- GLP-1 (Glucagon like peptide-1 ) receptor agonist
  - Exenatide, injection. before meal twice a day
  - Liraglutide longer acting once weekly





## 2- DPP-4 inhibitor

 DPP-4 (Dipeptidyl Peptidase -4): enzyme responsible for incretin degradation (/)



→ inactive GLP-1



# 3- amylin analogue

- pramlinitid act by increase insulin receptor sensitivity , ↑ satiety feeling , and ↓ gastric emptying rate.
- Therefore, can be given in combination with insulin.



# Diabetic complication

#### **Acute complication**

- Hypoglycemia.. Coma
- Hyperglycemia .. DKA
- Hyperosmolarhyperglycemia state (HHs)

#### **Chronic complication**

- Neuropathy
- Retinopathy
- Nephropathy

# Hypoglycaemia

Hypoglycaemia caused by excessive insulin dosage, a missed or late meal or by excessive exercise.

Therefore, the diabetic should always carry quick-acting oral glucose tablets. The unconscious patient should be given 20 ml of **50% dextrose** i.v., together with **glucagon**. Prolonged severe hypoglycaemia reactions may require 10-20% dextrose infusions over 24-48 hours or longer, together with high-dose steroids, e.g. **dexamethasone** (2 mg i.m. 4 hourly) and 20% **mannitol** i.v. over 20 minutes, to reduce

cerebral oedema. Unfortunately, if treatment is delayed, some diabetics may develop irreversible brain damage and death may occur.

### Diabetic ketoacidosis

O **Causes**: too much diet; inadequate ttt; sever stress

#### o manifestation :

- ✓ sever dehydration due to osmotic diuresis
- ✓ ketone bodies (acetone, acetoacetic acid; alpha ketoglutyric acid)
  in smell, ↓ pH (<7.3).
  </p>

#### management

- **I.V fluid** 4-5 L; saline 0.9% .. **dose** : 2L in 1st 2 hr then 3L (0.5 L/1hr).
- Kcl 20 meq in each liter of fluid for hypokalemia (fluid loss or dilution due to fluid replacement)
- **Insulin** regular I.V, 0.1u/kg then 0.1u/kg infusion per hr until <u>normal glucose level</u>, <u>serum electrolyte</u>, <u>pH</u>

**NB:** if blood glucose become <250mg/dL  $\rightarrow$  cerebral edema give G/S fluid instead of saline.

- I.V Bicarbonate if high acidosis.

# Hyperosmolar-hyperglycemic state

- State (no coma)
- old age .. Glucose > 600mg /dL ..Causes
   osmotic diuresis only→ v. sever dehydration :loss
   8-10 L of fluid (without loss of Na).
- No ketone bodies
- pH> 7.3
- Management
  - Saline 8-10 L in aggressive way
  - insulin in same way of DKA

NB: MUST saline before Insulin



# Neuropathy

- **Irreversible** nerve inflammation: high glucose for long time causes glucose bind with protein of body cell (nerve tissue).
- sensory: Numbness, tingling, back pain, leg pain.
- Motor; weakness
- autonomic: irregular heart beat, constipation, ED (in male).
- management : symptomatic
  - tight glycemic control
  - ✓ duloxetine or pregabaline (Lyrica).

