

First Lecture

Introduction to Heat Transfer

1- What is Heat Transfer?

"Energy in transit due to temperature difference."

Thermodynamics tells us:

- How much heat is transferred (δQ)
- How much work is done (δW)
- Final state of the system

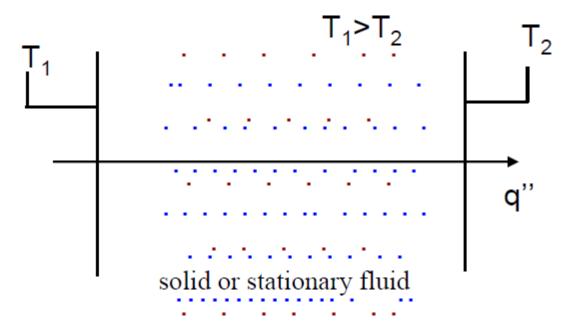
Heat transfer tells us:

- How (with what modes) δQ is transferred
- At what rate δQ is transferred
- Temperature distribution inside the body

Heat transfer complementary Thermodynamics

2- Heat transfer Modes.

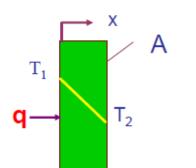
- ✓ Conduction
 - needs matter
 - molecular phenomenon (diffusion process)
 - without bulk motion of matter
- ✓ Convection
 - heat carried away by bulk motion of fluid
 - needs fluid matter
- ✓ Radiation
 - does not needs matter
 - transmission of energy by electromagnetic waves



3- Applications of Heat Transfer.

- ✓ Energy production and conversion
 - steam power plant, solar energy conversion etc.
- ✓ Refrigeration and air-conditioning
- ✓ Domestic applications
 - ovens, stoves, toaster
- ✓ Cooling of electronic equipment
- ✓ Manufacturing / materials processing
 - welding, casting, soldering, laser machining
- ✓ Automobiles / aircraft design
- ✓ Nature (weather, climate etc)

4- Heat Transfer by Conduction Mode.


In this mode type of heat transfer required (Medium and Temperature Gradient)

RATE:

q(W) or (J/s) (heat flow per unit time)

Rate equations (1D conduction):

☐ Differential Form

q = -k A dT/dx, W

k = Thermal Conductivity, W/mK

 $A = Cross-sectional Area, m^2$

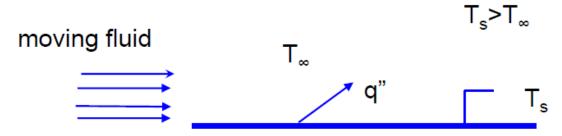
T = Temperature, K or °C

x = Heat flow path, m

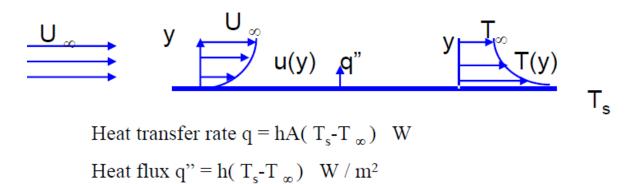
□ Difference Form

$$q = k A (T_1 - T_2) / (x_1 - x_2)$$

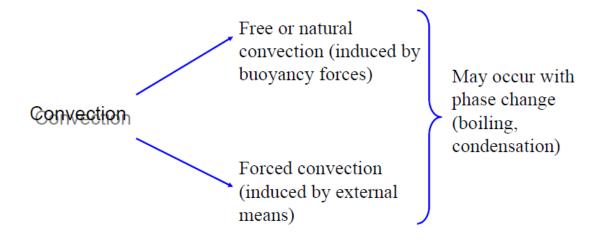
Heat flux: $q'' = q / A = - kdT/dx (W/m^2)$


(negative sign denotes heat transfer in the direction of decreasing temperature)

☐ Example:


The wall of an industrial furnace is constructed from 0.15 m thick fireclay brick having a thermal conductivity of 1.7 W/mK. Measurements made during steady state operation reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall which is 0.5 m by 3 m on a side?

5- <u>Heat Transfer by Convection Mode.</u>



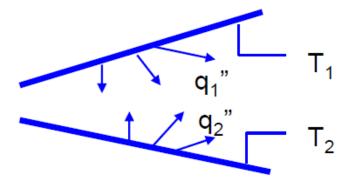
❖ Energy transferred by diffusion + bulk motion of fluid

h=heat transfer co-efficient (W /m2K)

The properties depends on geometry, nature of flow, thermodynamics properties etc.

Typical values of h (W/m²K)

Free convection gases: 2 - 25


liquid: 50 - 100

Forced convection gases: 25 - 250

liquid: 50 - 20,000

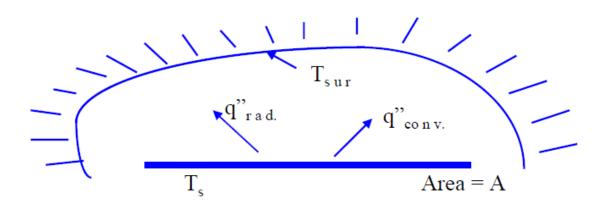
Boiling/Condensation 2500 -100,000

6- Heat Transfer by Radiation Mode.

RATE:

q(W) or (J/s) Heat flow per unit time.

Flux: $q''(W/m^2)$


Heat Transfer by electro-magnetic waves or photons(no medium required.)

Emissive power of a surface (energy released per unit area):

$$E=\varepsilon\sigma T_s^4 (W/m^2)$$

ε= emissivity (property)......

σ=Stefan-Boltzmann constant

Radiation exchange between a large surface and surrounding

$$Q''_{r a d} = \epsilon \sigma (T_s^4 - T_{sur}^4) W/m^2$$

☐ Example:

An uninsulated steam pipe passes through a room in which the air and walls are at 25 °C. The outside diameter of pipe is 70 mm, and its surface temperature and emissivity are 200 °C and 0.8, respectively. If the coefficient associated with free convection heat transfer from the surface to the air is 5 W/m²K, what is the rate of heat loss from the surface per unit length of pipe?