Synthetic Routes for Some Common Monocyclic Five-Membered πExcessive Hetero ataromatic Compounds

By

Assist. Prof. Oqba Nafia

Ph.D. of Organic Chemistry "Synthesis of Hetero Cyclic"

College of Pharmacy-2020

Synthetic Routes to Five membered rings

$$R$$
 R^2
 R^1
 X
 R^3

General method (Paal Synthesis)

Mechanisms

Formation of Furan

$$R^1$$
 R^2 P_2O_5 / heat R^3

Formation of Pyrrole

Formation of Thiophene

Synthesis of Furans

I- Paal Synthesis (as before)

(II) From α-halocarbonyl compounds (Fiest – Binary Synthesis)

This synthesis involves an aldol condensation with the carbonyl group of the halogeno-component, followed by the formation of the oxygen ring by intramolecular displacement of halide, and finally loss of water.

$$\begin{array}{c} R \\ R^1 \\ H \\ CI \end{array} + \begin{array}{c} O \\ R^2 \end{array} \begin{array}{c} base / base \\ O \\ R^3 \end{array}$$

3- From Pentose

Cycloaddition reactions have also been applied to synthesis of furans.

$$\begin{array}{c}
CH_3 \\
N \\
O\end{array}$$
OEt
$$\begin{array}{c}
CH_3O_2C - C \equiv C - CO_2CH_3 \\
O\end{array}$$
OEt

PYRROLE

There are three generally important approaches to pyrrole derivatives.

These can be summarized as shown.

1- Paal method (1,4-Dicarbonyl compounds react with ammonia or primary amines to give pyrroles).

$$Me \xrightarrow{OO} Me \xrightarrow{NH_3} Me \xrightarrow{N} Me$$

$$H$$

acetylacetone

2- Knorr Synthesis (From α-Aminoketones and β-diketones)

Example 1

Synthesis of pyrrole-2,4-dicarboxylic esters

iii) Hantzsch Synthesis

It the reaction of α -haloketones, β -ketoester and ammonia.

Example

Mechanism

Synthesis Thiophene

1- Paal Synthesis (As before)

2- Hinsberg Synthesis

It is the reaction of α -diketones and diethyl thioacetate

3- Fiesselmann synthesis

It is the reaction of methyl thioglycolate with unsaturated compounds like acetylenic molecules, followed by a base-catalyzed (*Dieckmann*-type cyclization) to generate substituted thiophenes

3- Gewald synthesis

Example 1

Me—CHO +
$$\frac{CN}{CN}$$
 $\frac{H_2O}{CN}$ $\frac{CN}{S}$ $\frac{CN}{NH_2}$ $\frac{S}{NH_2}$ $\frac{S}{TEA}$

Example 2

acetylacetone