Bioinformatics I
 Pairwise alignment of DNA \& protein (using matrices)

Dr Manaf A Guma
University Of Anbar- college of Applied sciences-Hit
Department of applied chemistry

1

What are the purposes of pairwise alignment comparison?

- The purposes of pairwise alignment comparison are (using the matrices or the manual methods):

1. To find the score of the identity between two sequences.
2. To find whether two (or more) genes or proteins are evolutionarily related to each other.
3. To find structurally or functionally similar regions within proteins

Common types of matrices are used for Sequence Comparison

- There are various methods available for pairwise alignment. the common methods are:

1. Dot matrix analysis.
2. Dynamic Programming.
3. Formula (by hand) approaches e.g (FASTA and BLAST).

1- Pairwise alignment using (Dot plot)Matrices

- This is one of the most popular graphical methods of aligning two sequences.
- The sequences are placed on the X - and Y-axes of the matrix and a dot is placed wherever a match is found between the two sequences.
- Diagonal runs of dots are joined to form the alignment.
- However, dot matrices give only a graphical representation and do not reveal the similarity score.

How do ''Dot matrices" look like?

Filtering the dot plot

C59072009

5

Dot matrix comparison by finding how many coincidences for alignment

Bioinformatics: Dot Matrix or Diagram method explaned \#1
Compare two sequences using Dot Matrix or Diagram method: 1. AGCTAGGA. 2. GACTAGGC

6

Another example

7

Give an interpretation for the matrices.

1. Regions of similarity appear as diagonal runs of dots.
2. Reverse diagonals (perpendicular to diagonal) indicate inversions
3. Reverse diagonals crossing diagonals (Xs) indicate palindromes.
4. Link can separate diagonals to form alignment with gaps; each amino acid. or base can only be used once (Can't double back)

What are the artifact of Dot matrices? By Filtering?

- Dot matrices for long sequences can be noisy due to insignificant matches.

9

What are the uses of dot matrices for?

1. Aligning two proteins or two nucleic acid sequences.
2. Finding amino acid repeats within a protein by comparing a protein sequence to itself.
3. Repeats appear as a set of diagonal runs stacked vertically and/or horizontally.

2- PAM matrices

- Point accepted mutation matrix known as a PAM.
- It is also called $\underline{\text { Percent }} \underline{\text { Accepted }} \underline{\text { Mutation. }}$
- Dayhoff and colleagues defined the PAM1 matrix as that which produces 1 accepted point mutation per 100 amino acid residues.
- PAM matrix is designed to compare two sequences which are a specific number of PAM units apart.
- Only mutations are allowed.
- https://www.youtube.com/watch?v=UCtP5-KtB94,
https://www.youtube.com/watch?v=F8WdDfpQqCM

PAM matrices are calculated by BLAST websites

- PAM matrices are also used as a scoring matrix when comparing DNA sequences or protein sequences to judge the quality of the alignment.
- This form of scoring system is utilized by a wide range of alignment software including BLAST.
- PAM250 corresponds to 20% amino acid identity, represents 250 mutations per 100 residues.
- If you times (multiply) PAM1 by itself 250 times you will get substitution matrix like this:

What are PAM matrices based on? PAM matrices are based on a simple evolutionary model

The divarge GAATC
The original GAGTT
Ancestral sequence?

- So, only mutations are allowed
- Sites evolve independently

3- BLOSUM Matrices

1. Blocks Substitution Matrix.
2. It is a matrix that calculates scores for each position which are obtained frequencies of substitutions in blocks of local alignments of protein sequences.
3. For example BLOSUM62 is derived from sequence alignments with no more than 62% identity.

What BLOSUM is based on?

- It is based on comparisons of blocks of sequences derived from the Blocks database.
- The block length is 60 amino acids. (without any gaps or frequencies).
- Blocks database refers to the alignment not to the individual sequence.
- BOLSUM matrices tell the \% of matching.
- It can be 100% even if there is a substitution.
- It tells how much the sequence is conserved!

What does block mean in BLOUSM method?

- It means creating a block of 2 seq or multiple sequences which refers to a best alignment in order to recognize the mutations, gaps and penalties in each row.
- The block presents the same length of sequences ' about 60 letter of amino acids or nucleotide'.

KKASKPKKAASKAPTKKPKATPVKKAKKKL_AATPKKAKKPKTVK
KKA AKPKKAASKAP SKKPKATPVKKAKKKPAATPKK ${ }^{\text {SKKPKVVVK }}$
KKA AKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVK
KKA AKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVK
KKASKPKKAASKAPTKKPKATPVKKAKKKL_AATPKKAKKPK TVK

Matches $=39$ columns $\times 6$ rows $=234$
Percentage of identity $(234 / 264)=89 \%$

BLOSUM in BLAST

Range 1: 127 to 501 GenPept					V Next Match A Previous Match			
Score		Expect	Method	Identities	Positive		Gaps	Frame
431 bits(1108)		8) $3 \mathrm{e}-147()$	Compositional matrix adjust.	203/375(54\%)	278/3	(74\%)) $8 / 3$	
Query	32 E+	EKKRRDREERQNIVLWRQPLITLQYFSLETLVVLKEWTSKLWHRQSIVVSFLLLLAALVA						
		+++ R+R ER +VLWR+PL T +Y LE +L+ W+++L ++ +++++L						
Sbjct	127 KQ	KQRERERLERGQLVLWRRPLQTTKYCGLELFTLLRTWSTRLLQQRLLLATUKVLSIVFSV				186	The p	
Query	92 TY	TYYVEGAHQQYVQRIEKQFLLYAYWIGLGILSSVGLGTGLHT					in the	
		$\mathrm{Y}++\mathrm{G}$ HQ ++ + + + YW+GLG+LSSVGLGTGLHTFLLYLGPHIASVTLAAYE					indic	
Sbjet	187 IY	IYKIDGPHQLAIEFVRRNTWFFVYWLGLGVLSSVGGLGTGLHTFLLYLGPHIASVTLAAYE 246					high s	
Query	152 CN	CNSVNFPEPPYPDQIICPEEEGAEGAISLWSIISKVRIEACMWGIGTAIGELPPYFMARA CNS+ FP+PPYPD IICPEE + ++WSI+SKVR+EA +WG GTA+GELPPYFMA+A				211	mismat	
							Matri	
Sbjct	247 CN	CNSLRFPQPPYPDDIICPEEPY的HVPNIWSIMSKVRLEAFLWGAGTALGELPPYFMAKA				306		

Mis-matching !!!!!

