Bioinformatics I

Pairwise alignment of DNA & protein (using matrices)

Dr Manaf A Guma
University Of Anbar- college of Applied sciences-Hit
Department of applied chemistry

1

What are the purposes of pairwise alignment comparison?

- The purposes of pairwise **alignment** comparison are (using the matrices or the manual methods):
- 1. To find the score of the identity between two sequences.
- 2. To find whether two (or more) genes or proteins are evolutionarily related to each other.
- 3. To find structurally or functionally similar regions within proteins

Common types of matrices are used for Sequence Comparison

- There are various methods available for pairwise alignment. the common methods are:
- 1. Dot matrix analysis.
- 2. Dynamic Programming.
- 3. Formula (by hand) approaches e.g (FASTA and BLAST).

3

3

1- Pairwise alignment using (Dot plot)Matrices

- This is one of the most popular graphical methods of aligning two sequences.
- The sequences are placed on the X- and Y-axes of the matrix and a dot is placed wherever a match is found between the two sequences.
- Diagonal runs of dots are joined to form the alignment.
- However, dot matrices give only a graphical representation and do not reveal the similarity score.

Bioinformatics: Dot Matrix or Diagram method explaned #1

Compare two sequences using Dot Matrix or Diagram method:

1. AGCTAGGA. 2. GACTAGGC

Give an interpretation for the matrices.

- 1. Regions of similarity appear as diagonal runs of dots.
- 2. Reverse diagonals (perpendicular to diagonal) indicate inversions
- 3. Reverse diagonals crossing diagonals (Xs) indicate palindromes.
- 4. Link can separate diagonals to form **alignment** with *gaps*; each amino acid. or base can only be used once (Can't double back)

8

Ջ

What are the artifact of Dot matrices? By Filtering?

• Dot matrices for long sequences can be noisy due to insignificant matches.

9

What are the uses of dot matrices for?

- 1. Aligning two proteins or two nucleic acid sequences.
- 2. Finding amino acid repeats within a protein by comparing a protein sequence to itself.
- 3. Repeats appear as a set of diagonal runs stacked vertically and/or horizontally.

2- PAM matrices

- Point accepted mutation matrix known as a PAM.
- It is also called **P**ercent **A**ccepted **M**utation.
- Dayhoff and colleagues defined the PAM1 matrix as that which produces 1 accepted point mutation per 100 amino acid residues.
- PAM matrix is designed to compare two sequences which are a specific number of PAM units apart.
- Only mutations are allowed.
- https://www.youtube.com/watch?v=UCtP5-KtB94,
 https://www.youtube.com/watch?v=F8WdDfpQqCM

11

PAM matrices are calculated by BLAST websites

- PAM matrices are also used as a scoring matrix when comparing DNA sequences or protein sequences to judge the quality of the alignment.
- · This form of scoring system is utilized by a wide range of alignment software including BLAST.
- PAM250 corresponds to 20% amino acid identity, represents 250 mutations per 100 residues.
- If you times (multiply) PAM1 by itself 250 times you will get substitution matrix like this:

What are PAM matrices based on? PAM matrices are based on a simple evolutionary model

- So, only mutations are allowed
- Sites evolve independently

13

3- BLOSUM Matrices

- 1. <u>Blo</u>cks <u>Substitution Matrix</u>.
- 2. It is a matrix that calculates scores for each position which are obtained frequencies of substitutions in blocks of local alignments of protein sequences.
- 3. For example BLOSUM62 is derived from sequence alignments with no more than 62% identity.

N -2 | 3 | 6 | BLOSUM 62 scoring matrix | Color | Colo

What BLOSUM is based on?

- It is based on comparisons of blocks of sequences derived from the Blocks database.
- The block length is 60 amino acids. (without any gaps or frequencies).
- Blocks database refers to the alignment not to the individual sequence.
- BOLSUM matrices tell the % of matching.
- It can be 100% even if there is a substitution.
- It tells how much the sequence is conserved!

15

What does block mean in BLOUSM method?

- It means creating a block of 2 seq or multiple sequences which refers to a best alignment in order to recognize the mutations, gaps and penalties in each row.
- The block presents the same length of sequences 'about 60 letter of amino acids or nucleotide'.

KKASKPKKAASKAPTKKPKATPVKKAKKLAATPKKAKKPKTVK
KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVK
KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVK
KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVK
KKASKPKKAASKAPTKKPKATPVKKAKKLAATPKKAKKPK TVK

Matches = 39 columns \times 6 rows = 234 Percentage of identity (234/264) = 89%

BLOSUM in BLAST

Range 1: 127 to 501 GenPept						▼ Next Ma	V Next Match 🛕 Previous Match			
Score		Expect	Method		Identities	Positives		Gaps	Frame	
431 bi	its(11	08) 3e-147()	Compositional matrix adjust.		203/375(54%)	278/375(74%)		8/375(2%)		
Query	32	_	IVLWRQPLITLQY: +VLWR+PL T +Y		KLWHRQSIVVSFLLI		01			
Sbjct	127				RLLQQRLLLATLIVI		L86 ⁻	The positives	(+)	
Query	92 187	Y ++G HQ +	+ + + + YW	+GLG+LSSVGLGTG	LHTFLLYLGPHIASV LHTFLLYLGPHIASV LHTFLLYLGPHIASV	TLAAYE	i	n the alignme		
Query	152	CNSVNFPEPPYF	PDQIICPEEEGAEG	AISLWSIISKVRIE	ACMWGIGTAIGELPF	YFMARA 2	1	nigh scoring mismatches.		
Sbjct	247	CNS+ FP+PPYP CNSLRFPQPPYP			A +WG GTA+GELPF AFLWGAGTALGELPF		306 I	Matrix scores	>0.	

Mis-matching !!!!!