Thermodynamic of proteins

Dr Manaf Abdulrahman Guma University Of Anbar- College Of Applied Sciences-Hit(Heet) Department Of Applied Chemistry

1

What we study in the biological system

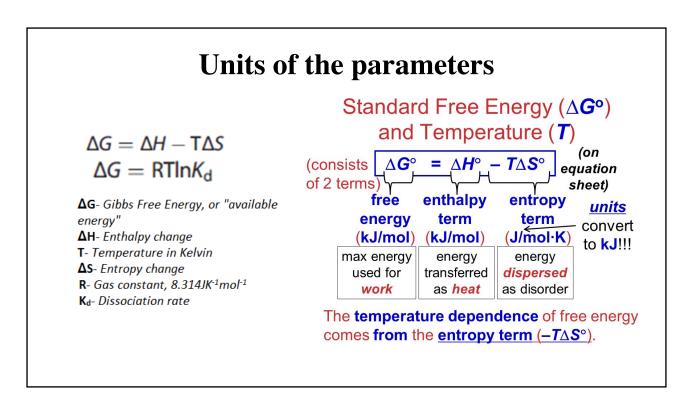
- We study proteins-protein interactions.
- Proteins are the biomolecules is a unit which the body is built of.
- Proteins as molecules have dynamics.
- So, therefore, we study the dynamic of the proteins by measuring the thermodynamic parameters during the interactions.
- What are the thermodynamic parameters? What are based on?

What are the thermodynamic parameters? ΔΗ

- Enthalpy ΔH , a property of a thermodynamic system, is equal to the system's internal energy plus the product of its pressure and volume.
- (1st law of thermodynamic)
- In a system enclosed, the heat absorbed or released equals the change in enthalpy

1- ΔH

- Any biological system underly to Exothermic and/or endothermic process.
- To understand that:
- The dissolving of NaOH is an exothermic reaction with $\Delta H < 0$
- So, the solution becomes warm and heat is transferred to the surroundings.
- In contrast, the dissolution of NaNO3 is an endothermic process,
- with $\Delta H > 0$.
- As a consequence, the solution becomes cold, as heat is drawn from the surroundings.


2- ΔS

- Entropy ΔS : it is a property of thermodynamic system. it tells how order or disorder the system is.
- $\Delta S > 0$ (+) more disorder.
- $\Delta S < 0$ (-) increase order.
- 2nd law: Entropy of any isolated system always increases.

5

Endergonic and exergonic processes

- Processes with $\Delta G < 0$ are termed *exergonic*, processes with $\Delta G > 0$ are *endergonic*.
- With ΔG , the *free energy* G. The general definition of the free energy is
- G = H TS
- *G* is also called the *Gibbs free energy*. Complete differentiation of *G* gives:
- $\Delta G = \Delta H T \Delta S$
- For reactions: $\Delta Gr = G$ products -G reactants
- The equilibrium is affected by change on these paprmters.

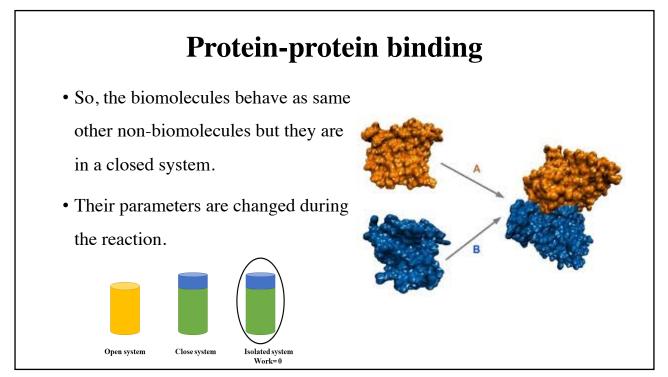
Solutions ! Δ H -92.22 kJ & Δ S= -198.75 J/K what is Δ G?

$$T_{K} = 25^{\circ}C + 273.15 = 298.15 \text{ K}$$

$$\Delta S^{\circ} = -198.75 \text{ J}' / \text{K x} \frac{1 \text{ kJ}}{1000 \text{ J}'} = -0.19875 \text{ kJ} / \text{K}$$

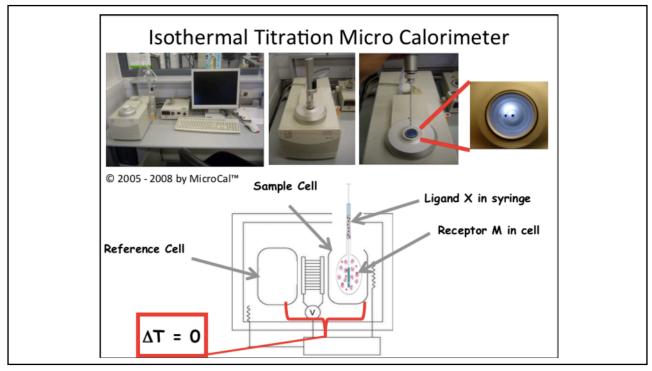
$$\Delta H^{\circ} = -92.22 \text{ kJ}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad \text{Plug in } \Delta H^{\circ}, \Delta S^{\circ}, \text{ and } T$$

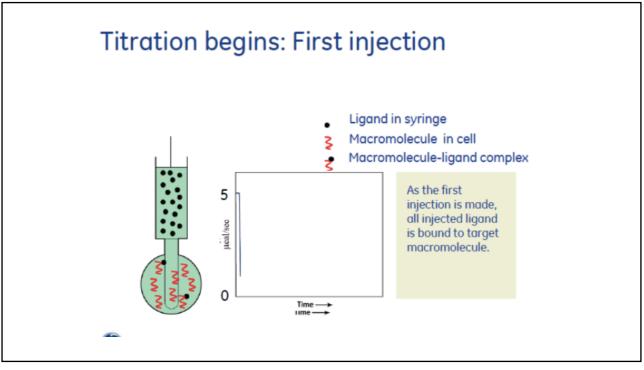

$$\Delta G^{\circ} = -92.22 \text{ kJ} - (298.15 \text{ K})(-0.19875 \text{ kJ} / \text{K})$$

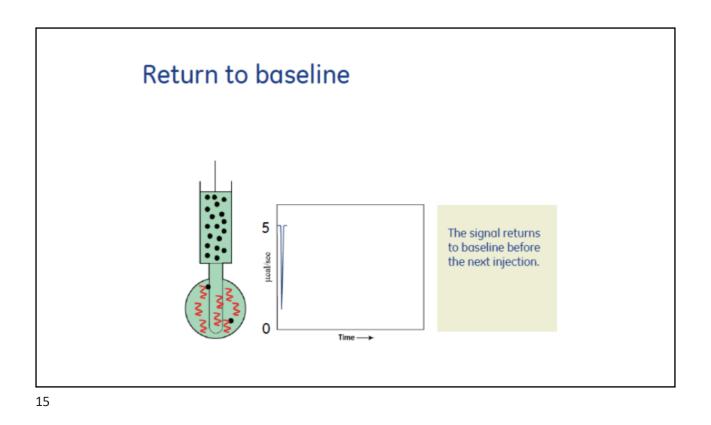
$$\Delta G^{\circ} = -92.22 \text{ kJ} + 59.257 \text{ kJ}$$

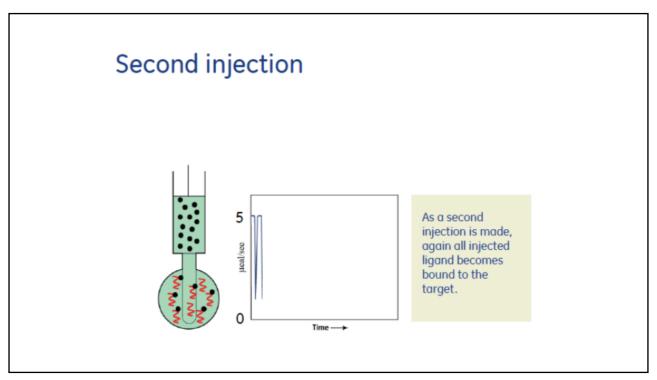
$$\boxed{\Delta G^{\circ} = -32.96 \text{ kJ}}$$

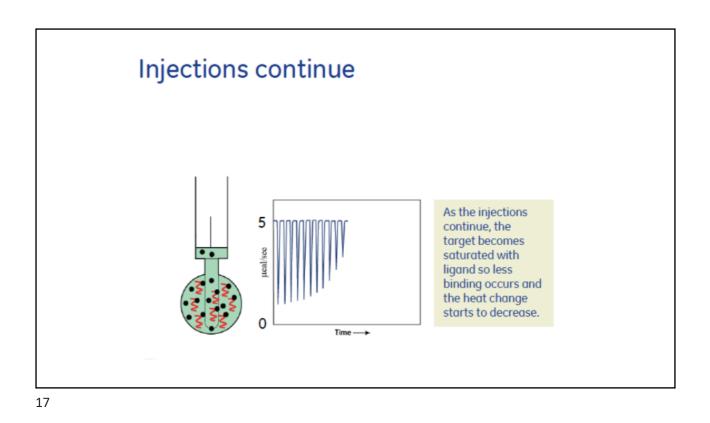

Thermodynamic and Biomolecules

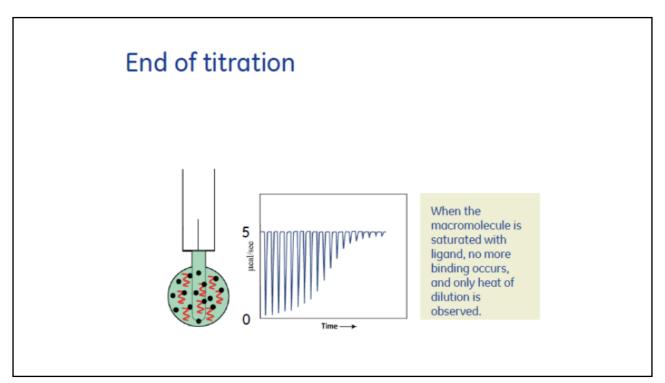
- Protein-protein interaction are a type of reaction.
- Meaning: thermodynamic parameters of the reactants will differ from the product.
- How can we calculate all of the thermodynamic parameters for proteinprotein interactions?
- In the labs, we use ITC isothermal calorimetry techniques to calculate the parameters and also to study the affinity binding Ka and decoration Kd and also the stoichiometry (molar ratio).

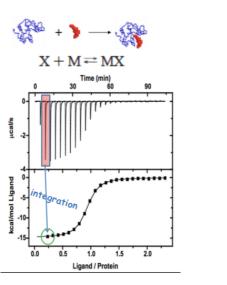


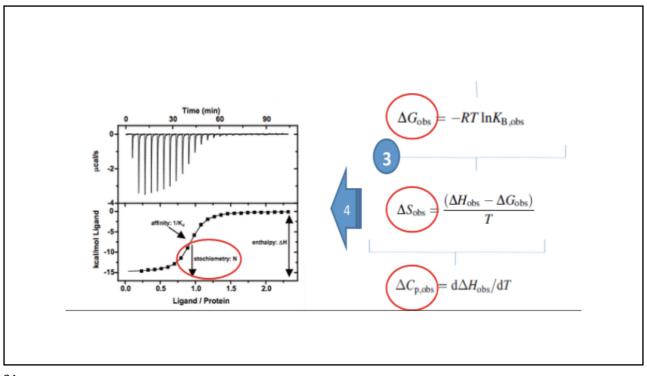

How does ITC work?


- Measurement principle of ITC
- We titrate a protein with another protein and then we measure the enthalpy ΔH of each point.
- By collecting different point, we can calculate the difference in (ΔH)
- When binding occurs, heat is either observed or released (comparing to the reference cell).
- As first injection is made, the micro-calorimeter measures all the heat releases till binding reaction has reached equilibrium.





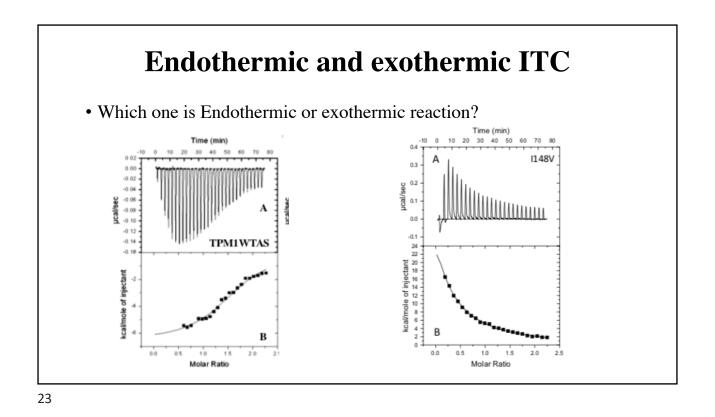



How do we fit the point to calculate the parameters ?

- We fit the collected points of ΔH to a curve equation to calculate the ka (affinity or association constant).
- Kd (dissociation constant)= 1/ka.
- When the binding is weak? Ka and kd
- When the binding is strong? Ka and kd

Other paramters?

- We can calculate ΔG form:
- $\Delta G = -RT \ln \Delta Ka = RT \ln \Delta Kd$ (Gibbs free energy equation), where: (R: gas constant and T is the absolute temperature).
- Or form $\Delta G = \Delta H T\Delta S$ (Van't Hoff equation).
- What does each tell?
- If $\Delta G = -$ or +
- If $\Delta H = -$ or +
- If $\Delta S = -$ or +
- What is ΔCp :



Example of determining of thermodynamic parameters

Table 4.9 Determination of Kd of tropomyosin-troponin binding using ITC technique.

ТРМ	Stoichiometry n.	Kd (μM)	ΔS (cal/mol)	ΔH (kcal/mol)	ΔG (kcal/mol)
TPM1WTAS	1.66 ± 0.033	0.93 ± 0.47	5	-6.56 ± 2.6	-8.22
TPM1WTGA	1.27 ± 0.022	0.62 ± 0.04	3.9	-7.2 ± 0.2	-8.45
K6K7E	0.16 ± 0.15	$4.9 \pm 1.23*$	-1500	-4546 ± 450	-7.23
K48K49E	2.04 ± 0.04	1.58 ± 0.03	11.8	-4.4 ± 0.2	-7.90
R90R91E	0.67 ± 0.01	0.25 ± 0.21	0.68	-8.7 ± 0.2	-8.98
S132R133E	1.48 ± 0.02	0.86 ± 0.43	13	-4.11 ± 0.11	-8.35
R167K168E	0.66 ± 0.02	0.79 ± 0.62	-39.1	$\textbf{-19.9}\pm0.8$	-8.34
N202N203	0.68 ± 0.01	0.76 ± 0.90	-13.4	-12.3 ± 0.43	-7.61
R244S245E	0.87 ± 0.01	2.60 ± 1.55	-8.77	-10.2 ± 0.9	-7.23

Note: the ΔG is shown in (kcal/mol) unit as it was calculated using the gas constants value (1.94 kcal K⁻¹mol⁻¹). For each parameter * indicates significant difference from TPM1WTAS (p<0.025). ANOVA oneway Post-Hoc method was used to analysis the data.

What do we get from ITC/ why?

- The thermodynamic parameters tells:
- How much heat the biological system produces.
- Order or disorder? And how order the system is?
- How much energy does the biological system gives or take?
- How many biomolecules per each could bind? Stoichiometry.
- What is the affinity of the reaction? Too speed? Too tight? Or low affinity binding?