Definiton of Tangents in Civil 3D

Horizontal curves used in Civil 3D

Figure 2.18: Different types of horizontal curves.

Simple Civruclar Curve

Figure 2.19: Elements of simple circular curve.

Curve paramters and their terminology

$$
\begin{array}{rlr}
D & =\frac{36,000}{2 \pi R}=\frac{5729.58}{R} & E
\end{array} \begin{aligned}
& \text { cos(} \Delta / 2) \\
& L
\end{aligned}=\frac{2 \pi R \Delta}{360^{\circ}}=R \Delta_{\mathrm{rad}} \quad C=2 R \sin \left(\frac{\Delta}{2}\right)
$$

where
$\mathrm{R}=$ radius of curve
L= length of curve
$\mathrm{T}=$ tangent length/distance
$\mathrm{M}=$ middle ordinate
Delta= central angle (deflection angle)
$\mathrm{D}=$ degree of curvature
$\mathrm{C}=$ chord length.
$\mathrm{PI}=$ point of intersection
TC= tangent to curve point (or PC, point of curvature)
$\mathrm{CT}=$ curve to tangent point (or PT, point of tangency)

Vertical curves and their termonology

Crest Vertical Curves

Type III

Type IV

Sag Vertical Curves

PVI $=$ point of vertical intersection
$\mathrm{BVC}=$ beginning of vertical curve (same point as PVC)
$\mathrm{EVC}=$ end of vertical curve (same point as PVT)
$E=$ external distance
$G_{1}, G_{2}=$ grades of tangents (\%)
$L=$ length of curve
$A=$ algebraic difference of grades, $G_{1}-G_{2}$

