

Example (1)

If the coefficient of kinetic friction between the $50-\mathrm{kg}$ crate and the ground is $\mathrm{u}_{\mathrm{k}}=0.3$, determine the distance the crate travels and its velocity when $\mathrm{t}=3 \mathrm{~s}$. The crate starts from rest, and $\mathrm{P}=200 \mathrm{~N}$.

solution:

$$
\begin{aligned}
& F=u_{k} N, a_{y}=0 \\
& +\uparrow \sum F_{y}=m a_{y} \longrightarrow \sum F_{y}=0 \\
& N-50(9.81)+200 \sin 30=0 \\
& \mathrm{~N}=390.5 \mathrm{~N} \\
& +\rightarrow \sum F_{x}=m a_{x} \\
& 200 \cos 30-0.3(390.5)=50 a \\
& \begin{array}{l}
a=1.121 \mathrm{~m} / \mathrm{s}^{2} \\
v=v_{o}+a_{c} t \\
v=0+1.21(3)=3.36 \frac{m}{s} \\
x=x_{o}+v_{o} t+\frac{1}{2} a_{c} t^{2} \\
x=0+0+\frac{1}{2}(1.121)(3)^{2} \\
x=5.04 m
\end{array}
\end{aligned}
$$

Example (2)

The conveyor belt is moving at $4 \mathrm{~m} / \mathrm{s}$. If the coefficient of static friction between the conveyor and the $10-\mathrm{kg}$ package B is $u_{k}=0.2$, determine the shortest time the belt can stop so that the package does not slide on the belt. And determine the distance the package will slide on the belt before coming to rest.

solution:

$$
\begin{aligned}
& F=10 * 9.81=98.1 \mathrm{~N} \\
& +\rightarrow \sum F_{x}=m a_{x} \\
& 0.2 * 98.1=10 a \\
& a=1.962 \mathrm{~m} / \mathrm{s}^{2} \\
& v=v_{o}+a_{c} t \\
& 4=0+1.962(t) \\
& t=2.04 \mathrm{~s} \\
& +\rightarrow v^{2}=v_{o}^{2}+2 a_{c}\left(x-x_{o}\right) \\
& 0=4^{2}+2(1.962)(x-0) \\
& x=-4.077 \mathrm{~m} \\
& x=4.1 \mathrm{~m} \leftarrow
\end{aligned}
$$

Example (3)

If the supplied force $\mathrm{F}=150 \mathrm{~N}$, determine the velocity of the $50-\mathrm{kg}$ block A when it has risen 3 m , starting from rest.

solution:

from fig (a)
$+\uparrow \sum F_{y}=0$
$150+150-T=0$
$T=300 \mathrm{~N}$
From fig (b)
$+\uparrow \sum F_{y}=m a_{y}$
$300+300-50(9.81)=50 a$
$a=2.19 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \uparrow$
$v^{2}=v_{o}{ }^{2}+2 a_{c}\left(x-x_{o}\right)$
$v^{2}=0+2(2.19)(3-0)$
$v=3.62 \mathrm{~m} / \mathrm{s} \quad$...Ans.

(b)

Example (4)

At the instant $\theta=60^{\circ}$, the boy's center of mass G is momentarily at rest. Determine his speed and the tension in each of the two supporting cords of the swing when $\theta=90^{\circ}$. The boy has a weight of (60 lb). Neglect his size and the mass of the seat and cords.

solution:

$+\downarrow \sum F_{t}=m a_{t}$
$60 \cos \theta=\frac{60}{32.2} a_{t}$
$a_{t}=32.2 \cos \theta$
$+4 \sum F_{n}=m a_{n}$
$2 T-60 \sin \theta=\frac{60}{32.2}\left(\frac{v^{2}}{\rho}\right)$
$2 T-60 \sin \theta=\frac{60}{32.2}\left(\frac{v^{2}}{10}\right)$
$v d v=a_{t} d x \quad, d x=10 d \theta$
$v d v=32.2 \cos \theta(10 d \theta)$
$\int_{0}^{v} v d v=\int_{60}^{90} 322 \cos \theta d \theta$
$v=9.289 \frac{\mathrm{ft}}{\mathrm{s}} \quad \searrow$
Sub. V inot (2)
$2 T-60 \sin 90=\frac{60}{32.2}\left(\frac{9.289^{2}}{10}\right)$

$T=38 l b$

Example (5)

A girl having a mass of 25 kg sits at the edge of the merry-go-round so her center of mass G is at a distance of 1.5 m from the axis of rotation. If the angular motion of the platform is slowly increased so that the girl's tangential component of acceleration can be neglected, determine the maximum speed which she can have before she begins to slip off the merry-go-round. The coefficient of static friction between the girl and the merry-go-round is $u_{k}=$ 0.3.

solution:

$+\rightarrow \sum F_{n}=m a_{n}$
$F=25 * 9.81=245.25 \mathrm{~N}$
$0.3(245.25)=25\left(\frac{v^{2}}{1.5}\right)$
$v=2.1 \mathrm{~m} / \mathrm{s}$
....Ans.

