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CHAPTER TWO
KINETICS OF PARTICLES: WORK
AND ENERGY

2-9 The Work of a Force

A force F will do work on a particle only when
the particle undergoes a displacement in the direction
of the force. For example, if the force F in Fig. causes
the particle to move along the path s from position r to
a new position r’, the displacement is then dr = #' - r.
The magnitude of dr 1s ds, the length of the
differential segment along the path. If the angle
between the tails of dr and F 1s €, then the work done

by F 1s a scalar quantity, defined by

dU=F ds cos 8
By definition of the dot product this equation can also be written as

dU=F.dr



2=-9-1 Work of a Variable Force

If the particle acted upon by the force F undergoes a finite displacement along its path
from r; to 1, or s; to s, . the work of force F is determined by integration. Provided F
and & can be expressed as a function of position, then

U, = /‘F'n‘r — /hFcos 0 ds
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2-9-2 Work of a Constant Force Moving Along a Straight Line

If the force F. has a constant magnitude and acts at a constant angle 6 from its
straight-line path, then the component of F, in the direction of displacement is always
F. cos 6. The work done by F, when the particle is displaced from s; to s, 1S
determined from, in which case

U,_, = F_.cos Hf _d.i
5

U, = F.cos0(s, — 5)
Here the work of F, represents the area of the rectangle as in Figure below:
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2-9-3 Work of a Weight

Consider a particle of weight W, which moves up along the path s shown in Fig. from
position s; to position s .

U_, = ff‘-dl- = /_[—lel-ldx'i + dvj + dzk)
r)

¥
= / —Wdy = —W(y, —»)
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U]_: = —W 11}-'
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2-9-4 Work of a Spring Force

If an elastic spring is elongated a distance ds, then the work done by the force that acts
on the attached particle 1s dU = -Fds = -ks ds. The work is negative since F; acts in
the opposite sense to ds. If the particle displaces from sy to s,, the work of F; is then

U,_, = fFFsds = f_—ksds
S] _'|'|

U_, = —(%ks3 — Tks7)

Unstretched
position, s = 0
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Example 9: The 10-kg block shown in /
Fig. rests on the smooth incline. If the =
spring 1is originally stretched 0.5 m,
determine the total work done by all the 2sin30°m
forces acting on the block when a
horizontal force P = 400 N pushes the
block up the plane s =2 m.

Initial
position of spring

SOLUTION: o e

Up = 400N (2 mcos 30°) = 692.8]



Spring Force F.. In the initial position the spring is stretched
s; = 0.5 m and in the final position it is stretched s, = 0.5m + 2 m =
2.5 m. We require the work to be negative since the force and
displacement are opposite to each other. The work of F, is thus

U, = —[$30N/m)(2.5 m)®> — {30 N/m)(0.5m)*| = —90)

Weight W. Since the weight acts in the opposite sense to its vertical
displacement, the work is negative; 1.e.,

Uy = —(98.1 N) (2msin 30°) = —98.11]

Normal Force Ng. This force does no work since it is always
perpendicular to the displacement.

Total Work. The work of all the forces when the block is displaced
2 m is therefore

Ur=6928J —90J —98.1J = 5051 Ans.



2-10 The Principle of Work and Energy

Consider the particle in Fig. which is located on the path defined relative to an inertial
coordinate system. If the particle has a mass m and is subjected to a system of external
forces represented by the resultant Fr = >F, then the equation of motion for the

particle in the tangential direction 1s > F; =

ma, . Applying the kinematic equation a; =

v dv>ds and integrating both sides. assuming initially that the particle has a position s
= sy and a speed v = v; , and later at s =s, , v = v, , we have

L. vy
E/ F,ds = / mv dv
_'-'l ]‘_f]

I-,F:

7 9

E/ F,ds = mv3 — 3mv}
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SU,_, = ymv3 — smvi

T] LE EU|_3 — TE

Where:

1

T = kinetic energy Emvz

ds
.r E.EI P t
--*f‘r—-'e,—ﬂ_ﬂ__
- H II. E;‘H“m
J \ \ =
s 1 1 -
SF — PH = 2F



Principle of Work and Energy.

Apply the principle of work and energy. 7, — 2U,_, = T>.
The kinetic energy at the initial and final points is always positive,
since it involves the speed squared (T — %mvz).

A force does work when it moves through a displacement in the
direction of the force.

Work is positive when the force component is in the same sense of
direction as its displacement, otherwise it is negative.

Forces that are functions of displacement must be integrated to
obtain the work. Graphically, the work is equal to the area under
the force-displacement curve.

The work of a weight is the product of the weight magnitude and
the vertical displacement, Uy, = = Wy. It is positive when the
weilght moves downwards.

The work of a spring is of the form U, = %ksl. where k is the
spring stiffness and s is the stretch or compression of the spring.



It we apply the principle of work and energy to this and each of the other particles in
the system, then since work and energy are scalar quantities, the equations can be
summed algebraically, which gives

ETI T EU|_: — ET}

Problems involve cases where a body slides over the surface of another body in the
presence of friction considers as special class of problems which requires a careful
application. Consider, for example, a block which is translating a distance s over a
rough surface as shown in Fig. If the applied force P just balances the resultant
frictional force iz N.

12 N
smv- + Ps — wlNs = smv




Example 10: The 3500-1b automobile
shown in Fig. travels down the 10° inclined
road at a speed of 20 ft/s. If the driver jams on
the brakes, causing his wheels to lock,
determine how far s the tires skid on the road.
The coefficient of kinetic friction between the
wheels and the road is 1z =0.5.

SOLUTION:

Applying the equation of equilibrium normal to the road, we have
SN3F, =0; N, —3500cos10°lb=0 N, = 344681b
Thus,
F, = w N, = 05 (3446.8 Ib) = 1723.41b
Principle of Work and Energy.
T\ +3¥U,»,=T,

1 ( 3500 Ib
2\322 ft/s’

Solving for s yields

)(20 ft/s)* + 3500 Ib(s sin 10°) — (1723.4 1b)s = 0

s =195t Ans,



NOTE: If this problem 1s solved by using the equation of motion, two
steps are involved. First, from the free-body diagram, Fig. , the
equation of motion is applied along the incline. This yields

3500 Ib

+/3F, =ma;  3500sin10°1b — 172341b = ~a
322 ft/s

a=—103ft/s’
Then. since a 1s constant, we have
(+¢) ©* =} + 2a(s — s):
(0)* = (20 ft/s)* + 2(—10.3 ft/s*)(s — 0)
s =195t Ans.



2-11 Power and Efficiency

The term “power” provides a useful basis for choosing the type of motor or machine
which 1s required to do a certain amount of work in a given time. For example, two
pumps may each be able to empty a reservoir if given enough time; however, the
pump having the larger power will complete the job sooner. The power generated by a
machine or engine that performs an amount of work 4U within the time interval dr is
therefore

_dU
dr
dl F-dr dr
P = = = F -
dr dt dt

The basic units of power used in the SI and FPS systems are the watt (W) and
horsepower (hp). respectively. These units are defined as
I1W=1Js=1N.m/s
1 hp =550 ft . 1b/s
For conversion between the two systems of units. 1 hp = 746 W.

The mechanical efficiency of a machine is defined as the ratio of the output of useful
power produced by the machine to the input of power supplied to the machine. Hence,

__ power output

© power input
If energy supplied to the machine occurs during the same fime interval at which it is
drawn, then the efficiency may also be expressed in terms of the ratio. Since machines
consist of a series of moving parts, frictional forces will always be developed within
the machine, and as a result, extra energy or power is needed to overcome these
forces. Consequently, power output will be less than power input and so the efficiency
of a machine is always less than 1. The procedure for analysis is as follow:



2-12 Conservative Forces and Potential Energy

If the work of a force is independent of the path
and depends only on the force’s initial and final
positions on the path, then we can classify this
force as a conservative force. Examples of
conservative forces are the weight of a particle
and the force developed by a spring. The work
done by the weight depends only on the vertical
displacement of the weight, and the work done by
a spring force depends only on the spring’s
elongation or compression.

Energy is defined as the capacity for doing work.
For example. if a particle 1s originally at rest, then
the principle of work and energy states that » Ui
= T>. In other words, the kinetic energy 1s

equal to the work that must be done on the particle
to bring it from a state of rest to a speed v. Thus.
the kinetic energy i1s a measure of the particle’s
capacity to do work, which 1s associated with the
motion of the particle. When energy comes from
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the position of the particle, measured from a fixed datum or reference plane, it is
called potential energy. Thus, potential energy is a measure of the amount of work a
conservative force will do when it moves from a given position to the datum. In
mechanics, the potential energy created by gravity (weight) and an elastic spring is

important.



In general, if y is positive upward, the gravitational potential energy of

the particle of weight W is
Vj; = Wy

When an elastic spring is elongated or compressed a
distance s from its unstretched position, elastic potential
energy V, can be stored in the spring. This energy is

V, = +5ks’
Here V, i1s abhvays positive since, m the deformed
position, the force of the spring has the capacity or

“potential” for always doing positive work on the particle
when the spring is returned to its unstretched position.

Unstretched
position. s =0

K
'];wwqwm—-o V.= 0
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Elastic potential energy




In the general case, if a particle 1s subjected to both gravitational and elastic forces,
the particle’s potential energy can be expressed as a potential function, which is the
algebraic sum

V=V3—V{,

The work done by a conservative force in moving the particle from one point to
another point 1s measured by the difference of this function, 1.e.,

U=V =V

For example, the potential function for a particle of weight ¥ suspended from a
spring can be expressed in terms of its position, s, measured from a datum located at
the unstretched length of the spring, We have

V=YtV

= —Ws + %ksz
If the particle moves from 51 to a lower position s, , it can be seen that the work of W
and F; 18

U]—j = V ( W?I AS%) - (_WSE + %;{?g)

W(s; — 51) — (%ks: - %ksﬂ

o
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2-13 Conservation of Energy

When a particle is acted upon by a system of both conservative and nonconservative
forces, the portion of the work done by the conservative forces can be written in terms
of the difference in their potential energies , i.e., (0. Ui 2)cons. = V1 - V> . As a result, the

principle of work and energy can be written as

TI Ll Vl Ll {.EUI—E)nDncuns. — TZ Ll VE

Here (3 U1.2)noncons. Tepresents the work of the nonconservative forces acting on the
particle. If only conservative forces do work then we have

n+vi=1,~

This equation is referred to as the conservation
of mechanical energy or simply the conservation
of energy._It states that during the motion the
sum of the particle’s kinetic and potential
energies remains constant. For this to occur,
kinetic energy must be transformed into potential
energy, and vice versa. For example, if a ball of
weight W is dropped from a height »# above the
ground (datum), the potential energy of the ball
1s maximum before it 1s dropped, at which time
its kinetic energy is zero. The total mechanical
energy of the ball in its initial position is thus

v,

Datum

Potential Energy (max)
Kinetic Energy (zero)

Potential Energy and
Kinetic Energy

Potential Energy (zero)
Kinetic Energy (max)




E=T,+V, =0+ Wh= Wh

When the ball has fallen a distance /#>2. its speed can be determined by using

2 .
e = 'UD . zac{}! — .“"U)

-1.-'l= \V2e(h/2) = Vgh.

The energy of the ball at the mid-height position is therefore

| W i h
E=T,+V,= ;;(\/gh)- + w(;) = Wh

e

which yields

e

Just before the ball strikes the ground, its potential energy is zero and its speed is

v = V2¢h
Here, again, the total energy of the ball is

1 W
E=T;+ V;= ;E( \V2gh)? + 0 = Wh
Note that when the ball comes in contact with the ground, it deforms somewhat, and
provided the ground is hard enough, the ball will rebound off the surface, reaching a
new height /', which will be /ess than the height # from which it was first released.

Neglecting air friction, the difference in height accounts for an energy loss,
El=W(h-h")
Which occurs during the collision. Portions of this loss produce noise, localized
deformation of the ball and ground, and heat.



If a system of particles is subjected only to conservative forces. then an equation can
be written for the particles. Applying the ideas of the preceding discussion. (> 77 +
> Ui 2=>T>) becomes

lT[ -+ }_:Ilf’r[ — ng + E‘P’r_‘.ﬂ

Here. the sum of the system’s initial kinetic and potential energies is equal to the sum
of the system’s final kinetic and potential energies. In other words. > T+ > 7= const.
The conservation of energy equation can be used to solve problems involving velocity,
displacement. and conservative force systems. It 1s generally easier to apply than the
principle of work and energy because this equation requires specifying the particle’s
kinetic and potential energies at only rwe points along the path., rather than
determining the work when the particle moves through a displacement. For
application it 1s suggested that the following procedure be used.

Potential Energy.

e Draw two diagrams showing the particle located at its initial and final points
along the path.

e If the particle 1s subjected to a vertical displacement. establish the fixed
horizontal datum from which to measure the particle’s gravitational potential
energy Fe .

e Data pertaining to the elevation y of the particle from the datum and the stretch
or compression s of any connecting springs can be determuned from the
geometry associated with the two diagrams.

e Recall Ve = Wy, where v 1s positive upward from the datum and negative
downward from the datum: also for a spring., Ve = 12 &s2, which i1s always
positive.

Conservation of Energy.

e Applythe equation 71 + V1 =72 + 2 .

e When determining the kinetic energy. 7 = 12 mv2, remember that the
particle’s speed v must be measured from an inertial reference frame.



Example 13: The ram R shown in Fig. has a mass of 100 kg
and is released from rest 0.75 m from the top of a spring, A. that
has a stiffness ks = 12 kIN/m. If a second spring B. having a
stiffness Az = 15 kN/m. 1s “nested” i A. determine the
maximum displacement of 4 needed to stop the downward
motion of the ram. The unstretched length of each spring is
indicated in the figure. Neglect the mass of the springs.

SOLUTION:

Potential Energv. We will assume that the ram compresses
both springs at the instant it comes to rest. The datum 1s located
through the center of gravity of the ram at its initial position.
Fig. When the kinetic energy is reduced to zero (v; =0), 4 1s
compressed a distance 54 and sp compresses sz =54 - 0.1 m.

Conservation of Energy.

T +V, =T, +V,
0+ 0=0+ {Fkssi + Skp(sy — 0.1 — Wh}
0+ 0=0+ {312000N/m)s] + 315000 N/m)(sy — 0.1 m)

— 981 N (0.75 m + s4) }

k=12 kKN/m

0.75m

0.75m




Rearranging the terms,
13 50055 — 248154 — 660.75 = 0
Using the quadratic formula and solving for the positive root, we have
54 = 033l m Ans.

Since sp = 033Im — 0.1 m = 0231 m, which is positive, the
assumption that both springs are compressed by the ram is correct.

NOTE: The second root, s, = —0.148 m, does not represent the
physical situation. Since positive s is measured downward, the negative
sign indicates that spring A would have to be “extended™ by an amount
of 0.148 m to stop the ram.



