Example (1)

If the $75-\mathrm{kg}$ crate starts from rest at A , determine its speed when it reaches point B. The cable is subjected to a constant force of $F=300 \mathrm{~N}$. Neglect friction and the size of the pulley.

Solution:

$$
\begin{aligned}
& x=A C-B C \\
& x=\sqrt{8^{2}+6^{2}}-\sqrt{2^{2}+6^{2}}=3.675 \mathrm{~m}
\end{aligned}
$$

$T_{1}+\sum U_{1-2}=T_{2}$
$0+300(3.675)=\frac{1}{2}(75)\left(v_{B}{ }^{2}\right)$
$v_{B}=5.42 \mathrm{~m} / \mathrm{s} \quad$....Ans.

Example (2)

The spring has a stiffness $k=50 \mathrm{lb} / \mathrm{ft}$ and an unstretched length of 2 ft . As shown, it is confined by the plate and wall using cables so that its length is 1.5 ft . A 4-lb block is given a speed v_{A} when it is at A, and it slides down the incline having a coefficient of kinetic friction $\mathrm{u}_{k}=0.2$. If it strikes the plate and pushes it forward 0.25 ft before stopping, determine its speed at A. Neglect the mass of the plate and spring.

Solution:

$+\sum \sum f_{y}=0$
$N_{B}-4\left(\frac{4}{5}\right)=0$
$N_{B}=3.2 \mathrm{lb}$

$T_{1}+\sum U_{1-2}=T_{2}$
$\frac{1}{2}\left(\frac{4}{32.2}\right) v_{a}^{2}+(3+0.25)\left(\frac{3}{5}\right) 4-0.2(3.2)(3+0.25)-\left[\frac{1}{2}(50)(0.75)^{2}-\right.$
$\left.\frac{1}{2}(50)(0.5)^{2}\right]=0$
$v_{a}=5.8 \mathrm{lb} / \mathrm{ft} \quad$...Ans.

Example (3)

The block has a mass of 20 kg and is released from rest when $s=0.5 \mathrm{~m}$. If the mass of the bumpers A and B can be neglected, determine the maximum deformation of each spring due to the collision.

Solution:

$T_{1}+v_{1}=T_{2}+v_{2}$

$0+0=0+\frac{1}{2}(500) s_{A}^{2}+\frac{1}{2}(800) s_{B}{ }^{2}+2(9.81)\left[-\left(s_{A}+s_{B}\right)-0.5\right] \ldots$ (
Also
$F_{S}=500 s_{A}=800 s_{B}$
$s_{A}=1.6 s_{B} \ldots . .(2)$
Sub. (2) into (1)
$0=\frac{1}{2}(500)\left(1.6 s_{B}\right)^{2}+\frac{1}{2}(800) s_{B}{ }^{2}+2(9.81)\left[-\left(1.6 s_{B}+s_{B}\right)-0.5\right]$
$s_{B}=0.638 \mathrm{~m}$
$s_{A}=1.02 \mathrm{~m}$

Example (4)

Block A has a weight of 60 lb and block B has a weight of 10 lb . Determine the speed of block A after it moves 5 ft down the plane, starting from rest. Neglect friction and the mass of the cord and pulleys.

Solution:

$$
2 x_{A}+x_{B}=l
$$

By deriving

$$
\begin{aligned}
& 2 v_{A}+v_{B}=0 \\
& 2 T_{1}+\sum U_{1-2}=T_{2}
\end{aligned}
$$

$0+60\left(\frac{3}{5}\right) 5-10(10)=\frac{1}{2}\left(\frac{60}{32.2}\right) v_{A}^{2}+\frac{1}{2}\left(\frac{10}{32.2}\right)\left(v_{A}\right)^{2}$
$v_{A}=7.18 \frac{\mathrm{ft}}{\mathrm{s}} \quad$...Ans.

Example (5)

A $20-\mathrm{lb}$ block slides down a 30° inclined plane with an initial velocity of $2 \mathrm{ft} / \mathrm{s}$. Determine the velocity of the block in 3 s if the coefficient of kinetic friction between the block and the plane is $\mathrm{u}_{\mathrm{k}}=0.25$.

solution:

$$
\begin{aligned}
& +m v_{y 1}+\sum \int_{t 1}^{t 2} F_{y} d t=m v_{y 2} \\
& 0+N(3)-20 \cos 30(3)=0 \\
& N=17.32 l b \\
& +\nearrow m v_{x 1}+\sum \int_{t 1}^{t 2} F_{x} d t=m v_{x 2} \\
& \frac{20}{32.2}(2)-20 \sin 30(3)-0.25(7.32)(3)=\frac{20}{32.2} v
\end{aligned}
$$

$v=29.4 \mathrm{ft} / \mathrm{s} \quad \ldots$. Ans.

Example (6)

A train consists of a 50-Mg engine and three cars, each having a mass of 30
Mg . If it takes 80 s for the train to increase its speed uniformly to $40 \mathrm{~km} / \mathrm{h}$, starting from rest, determine the force T developed at the coupling between the engine E and the first car A. The wheels of the engine provide a resultant frictional attractive force \mathbf{F} which gives the train forward motion, whereas the car wheels roll freely. Also, determine F acting on the engine wheels.

solution:

$v_{x 2}=40 \frac{\mathrm{~km}}{\mathrm{~h}} * \frac{\frac{10^{3}}{3600} \mathrm{~m}}{\mathrm{~s}}=11.11 \mathrm{~m} / \mathrm{s}$
For three cars only

$$
\begin{aligned}
& +\rightarrow m v_{x 1}+\sum \int_{t 1}^{t 2} F_{x} d t=m v_{x 2} \\
& 0+T(80)=3(30)\left(10^{3}\right)(11.11) \\
& T=15.2 \mathrm{Kn} \quad \ldots . \mathrm{Ans} .
\end{aligned}
$$

For all the train
$+\rightarrow m v_{x 1}+\sum \int_{t 1}^{t 2} F_{x} d t=m v_{x 2}$
$0+F(80)=[50+3(30)]\left(10^{3}\right)(11.11)$
$F=19.4 K n$
....Ans.

Example (7)

Ball A has a mass of 3 kg and is moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$ when it makes a direct collision with ball B , which has a mass of 2 kg and is moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$. If $\mathrm{e}=0.7$, determine the velocity of each ball just after the collision. Neglect the size of the balls.

solution:

$$
\begin{align*}
& +\rightarrow m_{A}\left(v_{A}\right)_{1}+m_{B}\left(v_{B}\right)_{1}=m_{A}\left(v_{A}\right)_{2}+m_{B}\left(v_{B}\right)_{2} \\
& 3(8)+2(-4)=3 v_{A}+2\left(v_{B}\right) \\
& 3 v_{A}+2 v_{B}=16 \ldots . .(1) \tag{1}\\
& +\rightarrow e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}} \\
& 0.7=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{8-(-4)} \\
& v_{B}-v_{A}=8.4 \tag{2}
\end{align*}
$$

Solving (1) \& (2)

$$
\begin{gathered}
v_{A}=0.16 \frac{\mathrm{~m}}{\mathrm{~s}} \leftarrow \\
v_{B}=8.24 \frac{\mathrm{~m}}{\mathrm{~s}} \rightarrow
\end{gathered}
$$

