

Coplanar Force System: In the case of a *coplanar force system*, the lines of action of all the forces lie in the same plane, Fig. 4–41*a*, and so the resultant force $F_R = \sum F$ of this system also lies in this plane. Furthermore, the moment of each of the forces about any *point O* is directed perpendicular to this plane. Thus, the resultant moment $(M_R)_0$ and resultant force F_R will be *mutually perpendicular*, Fig. 4–41*b*. The resultant moment can be replaced by moving the resultant force F_R a perpendicular or moment arm distance *d* away from *point O* such that F_R produces the *same moment* $((M_R)_0$ about *point O*, Fig. 4–41*c*. This distance *d* can be determined from the scalar equation $(M_R)_0 = F_R d = \sum M_0$, or $d = (M_R)_0/F_R$.

