

Density

- The density of a substance, in general, depends on temperature and pressure.
- The density of most gases is proportional to pressure and inversely proportional to temperature.
- Liquids and solids, on the other hand, are essentially incompressible substances, and the variation of their density with pressure is usually negligible.
- For example at $20^{\circ}C$ the density of water changes from 998 kg/m^3 at 1 atm to $1003 kg/m^3$ at 100 atm, a change of just 0.5 percent.
- For example, at 1 atm, the density of water changes from 998 kg/m^3 at 20 °C to 975 kg/m^3 at 75 °C, a change of 2.3 percent, which can still be neglected in many engineering analyses.
- Hence, the density of liquids and solids depends more strongly on temperature than it does on pressure.

16

Specific Gravity (Relative Density)

• Sometimes the density of a substance is given relative to the density of a well-known substance. Then it is called *specific gravity*, or *relative density*.

Specific gravity (relative density): The ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at 4°C).

$$SG = \frac{\rho}{\rho_{H_2O}}$$

Specific gravities of some substances at 0°C	
Substance	SG
Water	1.0
Blood	1.05
Seawater	1.025
Gasoline	0.7
Ethyl alcohol	0.79
Mercury	13.6
Wood	0.3-0.9
Gold	19.2
Bones	1.7-2.0
Ice	0.92
Air (at 1 atm)	0.0013

- •Density of water at 4 °C : $1000 \frac{kg}{m^3}$
- •Gases have low specific gravities
- •A liquid such as Mercury has a high specific gravity, 13.2
- •The ratio is unitless.

<section-header>Specific Weight Specific weight: The weight of a unit volume of a substance and is expressed as; $\gamma_s = \rho g \qquad (N/m^3)$ g = local acceleration of gravity, 9.807 m/s² •Specific weight characterizes the weight of the fluid system •Specific weight of water at 4 °C : 9.80 kN/m³ •Specific weight of air at 4 °C : 11.9 N/m³

18

17

- Process diagrams plotted by employing thermodynamic properties as coordinates are very useful in visualizing the processes.
- Some common properties that are used as coordinates are temperature T, pressure P, and volume V (or specific volume v).
- The prefix iso- is often used to designate a process for which a particular property remains constant.
- Isothermal process: A process during which the temperature remains constant (*T* = *constant*).
- Isobaric (or isopiestic) process: A process during which the pressure remains constant (*P* = *constant*).
- Isochoric (or isometric) process: A process during which the specific volume remains constant (v = constant).
- Cycle: A system is said to have undergone a cycle if it returns to its initial state at the end of the process. That is, for a cycle the initial and final states are identical.

Problem-Solving Technique

- Step 1: Problem Statement
- Step 2: Schematic
- Step 3: Assumptions and Approximations
- Step 4: Physical Laws
- Step 5: Properties
- Step 6: Calculations
- Step 7: Reasoning, Verification, and Discussion

27

