## University of Anbar

## Engineering Thermodynamics CHE 215

Lecture \# 02

## Objectives of Lecture Note

- Explain the closed and open system, surrounding and boundary.
- Explain the basic concepts of thermodynamics such as system, state, state postulate, equilibrium, process, and cycle.
- Review concepts of temperature, temperature scales, pressure, and absolute and gage pressure.


## Systems and Control Volumes

- System: A quantity of matter or a region in space chosen for study.
- Surroundings: The mass or region outside the system
- Boundary: The real or imaginary surface that separates the system from its surroundings.
- The boundary of a system can be fixed or movable.
- Mathematically, the boundary has zero
 thickness.




## Closed System/Control Mass

- A system of fixed mass is called a closed system, or control mass
- The closed system boundary does not have to be fixed
- No mass can cross the closed system boundary
- Energy in the form of heat and work can cross the closed system boundary
- If even energy is not allowed to cross we have an isolated system


Energy, not mass, crosses closed-system boundaries



## Open System / Control Volume

- A system that involves mass transfer across its boundaries is called an open system, or control volume
- The boundaries of a control volume is called control boundaries and is fixed in shape and position
- Energy in the form of heat and work as well as mass can cross the control boundaries
- A water heater, a car radiator, a turbine, and a compressor all involve mass flow and should be analyzed as control volumes (open systems).




## Properties of a System

- Property: Any characteristic of a system.

Some familiar properties are:

- pressure $P$,
- temperature $T$,
- volume $V$, and

- mass m.

The list can be extended to include less familiar ones such as:

- viscosity,
- thermal conductivity,
- modulus of elasticity,
- thermal expansion coefficient,
- electric resistivity, and
- even velocity and elevation.


## Intensive and Extensive Properties

- Properties are considered to be either intensive or extensive.
- Intensive properties: Those that are independent of the mass of a system, such as temperature, pressure, and density.
- Extensive properties: Those whose values depend on the size-or extent-of the system, such as total mass, total volume V , and total momentum.
- Specific properties: Extensive properties per unit mass, such as specific total energy $(e=E / m, v=V / m)$


## Intensive or Extensive Properties



An easy way to determine whether a property is intensive or extensive is to divide the system into two equal parts with a partition, each part will have the same value of intensive properties as the original system, but half the value of extensive properties.


## Density

## Density is defined as mass per unit volume

$\rho=\frac{m}{V} \quad\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
$m=$ mass, and $V=$ volume.
-Different fluids can vary greatly in density
-Liquids densities do not vary much with pressure and temperature
-Density of water at $4{ }^{\circ} \mathrm{C}: 1000 \mathrm{~kg} / \mathrm{m}^{3}$
-Density of Air at $4^{\circ} \mathrm{C}: 1.20 \mathrm{~kg} / \mathrm{m}^{3}$
Specific volume is defined as volume per unit mass
$v=\frac{V}{m}=\frac{1}{\rho}$


Density is mass per unit volume; specific volume is volume per unit mass.

## Density

- The density of a substance, in general, depends on temperature and pressure.
- The density of most gases is proportional to pressure and inversely proportional to temperature.
- Liquids and solids, on the other hand, are essentially incompressible substances, and the variation of their density with pressure is usually negligible.
- For example at $20^{\circ} \mathrm{C}$ the density of water changes from $998 \mathrm{~kg} / \mathrm{m}^{3}$ at 1 atm to $1003 \mathrm{~kg} / \mathrm{m}^{3}$ at 100 atm, a change of just 0.5 percent.
- For example, at 1 atm , the density of water changes from $998 \mathrm{~kg} / \mathrm{m}^{3}$ at $20{ }^{\circ} \mathrm{C}$ to $975 \mathrm{~kg} / \mathrm{m}^{3}$ at $75^{\circ} \mathrm{C}$, a change of 2.3 percent, which can still be neglected in many engineering analyses.
- Hence, the density of liquids and solids depends more strongly on temperature than it does on pressure.


## Specific Gravity (Relative Density)

- Sometimes the density of a substance is given relative to the density of a well-known substance. Then it is called specific gravity, or relative density.

Specific gravity (relative density): The ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at $4^{\circ} \mathrm{C}$ ).

$$
\mathrm{SG}=\frac{\rho}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

| TABLE 2-1 |
| :--- | :--- |
| Specific gravities of some |
| substances at $0^{\circ} \mathrm{C}$ | S.

-Density of water at $4{ }^{\circ} \mathrm{C}: 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

- Gases have low specific gravities
- A liquid such as Mercury has a high specific gravity, 13.2
-The ratio is unitless.


## Specific Weight

Specific weight: The weight of a unit volume of a substance and is expressed as;

$$
\gamma_{s}=\rho g \quad\left(\mathrm{~N} / \mathrm{m}^{3}\right)
$$

$g=$ local acceleration of gravity, $9.807 \mathrm{~m} / \mathbf{s}^{2}$
-Specific weight characterizes the weight of the fluid system
-Specific weight of water at $4^{\circ} \mathrm{C}: 9.80 \mathrm{kN} / \mathrm{m}^{3}$

- Specific weight of air at $4{ }^{\circ} \mathrm{C}: 11.9 \mathrm{~N} / \mathrm{m}^{3}$


## State and Equilibrium

- Thermodynamics deals with equilibrium states.
- Equilibrium: A state of balance.
- In an equilibrium state there are no unbalanced potentials (or driving forces) within the system.
- Thermal equilibrium: If the temperature is the same throughout the entire system.
- Mechanical equilibrium: If there is no change in pressure at any point of the system with time.
- Phase equilibrium: If a system involves two phases and when the mass of each phase reaches an equilibrium level and stays there.
- Chemical equilibrium: If the chemical composition of a system does not change with time, that is, no chemical reactions occur.

(a) State 1

(b) State 2

A system at two different states.

(a) Before

(b) After

A closed system reaching thermal equilibrium.

## The State Postulate

- Simple compressible system: If a system involves no electrical, magnetic, gravitational, motion, and surface tension effects.
- The number of properties required to fix the state of a system is given by the state postulate:
- The state of a simple compressible system is completely specified (or fixed) by two independent, intensive properties.


The state of nitrogen is fixed by two independent, intensive properties.

## Processes and Cycles

Process: Any change that a system undergoes from one equilibrium state to another.
Path: The series of states through which a system passes during a process.
To describe a process completely, one should specify the initial and final states, as well as the path it follows, and the interactions with the surroundings.
Quasistatic or quasi-equilibrium process: When a process proceeds in such a manner that the system remains infinitesimally close to an equilibrium state at all times.

Property A

State 2
State 1
Property B
A process between states 1 and 2 and the process path

(a) Slow compression (quasi-equilibrium)

(b) Very fast compression (nonquasi-equilibrium)
Quasi-equilibrium and nonquasiequilibrium compression processes

- Process diagrams plotted by employing thermodynamic properties as coordinates are very useful in visualizing the processes.
- Some common properties that are used as coordinates are temperature $T$, pressure $P$, and volume $V$ (or specific volume $v$ ).
- The prefix iso- is often used to designate a process for which a particular property remains constant.
- Isothermal process: A process during which the temperature remains constant ( $T=$ constant).
- Isobaric (or isopiestic) process: A process during which the pressure remains constant ( $P=$ constant ).
- Isochoric (or isometric) process: A process during which the specific volume remains constant ( $v=$ constant).
- Cycle: A system is said to have undergone a cycle if it returns to its initial state at the end of the process. That is, for a cycle the initial and final states are identical.


The $P-V$ diagram of a compression process

## The Steady-Flow Process

- The term steady implies no change with time. The opposite of steady is unsteady, or transient.
- A large number of engineering devices operate for long periods of time under the same conditions, and they are classified as steady-flow devices.
- Steady-flow process: A process during which a fluid flows through a control volume steadily.
- Steady-flow conditions can be closely approximated by devices that are intended for continuous operation such as turbines, pumps, boilers, condensers, and heat exchangers or power plants or refrigeration systems.


Under steady-flow conditions, the mass and energy contents of a control volume remain constant.

## Temperature and The Zeroth Law of Thermodynamics

- The zeroth law of thermodynamics: If two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other.
- By replacing the third body with a thermometer, the zeroth law can be restated as two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact.


Two bodies reaching thermal equilibrium after being brought into contact in an isolated enclosure.

## Temperature Scales

- All temperature scales are based on some easily reproducible states such as the freezing and boiling points of water: the ice point and the steam point.
- Ice point: A mixture of ice and water that is in equilibrium with air saturated with vapor at 1 atm pressure $\left(0^{\circ} \mathrm{C}\right.$ or $\left.32^{\circ} \mathrm{F}\right)$.
- Steam point: A mixture of liquid water and water vapor (with no air) in equilibrium at 1 atm pressure $\left(100^{\circ} \mathrm{C}\right.$ or $\left.212^{\circ} \mathrm{F}\right)$.
- Celsius scale: in SI unit system
- Fahrenheit scale: in English unit system
- Thermodynamic temperature scale: A temperature scale that is independent of the properties of any substance.
$\checkmark$ Kelvin scale (SI)
$\checkmark$ Rankine scale (E)
- A temperature scale nearly identical to the Kelvin scale is the ideal-gas temperature scale. The temperatures on this scale are measured using a constant-volume gas thermometer.
$T(\mathrm{~K})=T\left({ }^{\circ} \mathrm{C}\right)+273.15$
$T(\mathrm{R})=T\left({ }^{\circ} \mathrm{F}\right)+459.67$
$T(\mathrm{R})=1.8 T(\mathrm{~K})$
$T\left({ }^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+32$
$\Delta T(\mathrm{~K})=\Delta T\left({ }^{\circ} \mathrm{C}\right)$
$\Delta T(\mathrm{R})=\Delta T\left({ }^{\circ} \mathrm{F}\right)$

- The reference temperature in the original Kelvin scale was the ice point, 273.15 K , which is the temperature at which water freezes (or ice melts).
- The reference point was changed to a much more precisely reproducible point, the triple point of water (the state at which all three phases of water coexist in equilibrium), which is assigned the value 273.16 K .


## Problem-Solving Technique

- Step 1: Problem Statement
- Step 2: Schematic
- Step 3: Assumptions and Approximations
- Step 4: Physical Laws
- Step 5: Properties
- Step 6: Calculations
- Step 7: Reasoning, Verification, and Discussion


A step-by-step approach can greatly simplify problem solving.

Given: Air temperature in Denver
To be found: Density of air
Missing information: Atmospheric pressure

Assumption \#1: Take $P=1 \mathrm{~atm}$ (Inappropriate. Ignores effect of altitude. Will cause more than $15 \%$ error.)

Assumption \#2: Take $P=0.83 \mathrm{~atm}$ (Appropriate. Ignores only minor effects such as weather.)

The assumptions made while solving an engineering problem must be reasonable and justifiable.


The results obtained from an engineering analysis must be checked for reasonableness.


