University of Anbar

Collage of Science

Department of Applied Mathematics

Third Year – First Semester

Lectures in Mathematical analysis

By: Lecturer Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 1

Basic definitions

University of Anbar

Department of Applied Mathematics

Third Year — First Semester Lectures in Mathematical analysis By: Dr. Rifaat Saad Abdul-Jabbar

Mathematical analysis 1

Third Class

- Real Numbers R and Extended Real Numbers R*
- Euclidian space o Countable and uncountable sets.
- Metric S paces
 - Compactness
 - \circ Connectedness.
 - Perfect sets
- Convergence and divergence in Metric Space
- Cauchy sequence
- Absolute and conditional convergence .
- Product of series
- Compactness and connectedness .
- Continuity and uniform continuity
- Intermediate value theorem
- Sequence and series of functions .
- uniform and point wise continuity
- power series

University of Anbar		Third Year – First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 1	By: Dr. Rifaat Saad Abdul-Jabbar
		—

Basic definitions

Definition 1. (Natural numbers) ℕ

The set { 1,2,3, ... } is called Naturl numbers denoted by \mathbb{N}

Definition 2. (integer numbers \mathbb{Z})The set {..., -2, -1, 0, 1, 2, ...} is called integer numbers and denoted by \mathbb{Z} .

Definition 3. (Rational numbers Q)

The set $\mathbb{Q} = \{\frac{p}{q}, p, q \in \mathbb{Z} \text{ and } q \neq 0\}$ is called the rational numbers and denoted by \mathbb{Q}

The set Q is not sufficient for all purposes, for example, there is no rational number $p \in \mathbb{Q}$ s.t $p^2 = 2$. This problem leads to define the set of irrational numbers The set of irrational numbers is denoted by \mathbb{Q}' and the set of all real numbers is the union of \mathbb{Q} and \mathbb{Q}'

Theorem 1. Show that The equation $p^2 = 2$. has no solution in \mathbb{Q}

Proof Suppose that PEQ sit P= m, m, n EZ and suppose that m and n are not both even. if (holds, then m2=2n2 ... 2) then mis even i.e., m=2a and $m^2 = 4a^2 \longrightarrow 4a^2 = 2n^2$ (substituting) > n2 = 2a2 >> n is even. C! (for assumption not mad n are not both even) in There is no PED st p2=2.

To explain the relation between $\mathbb Q$ and $\mathbb Q'$ we need the following theorem:

University of Anbar Third Year - First Semester **Department of Applied Mathematics** Lectures in Mathematical analysis **Collage of Science** By: Dr. Rifaat Saad Abdul-Jabbar Lecture No. 1 Theorem 2: If $\frac{m}{n}$ and $\frac{p}{q} \in \mathbb{R}$, $p \neq 0$ then Proof: $(\frac{m}{n} + \sqrt{2} \frac{p}{9})$ is irrational. Suppose that $(\frac{M}{n} + \sqrt{2}\frac{P}{q})$ is rational number $\rightarrow \exists r, s \in \mathbb{Z}, s \neq 0$ such that $\underline{m} + \sqrt{2} P = \underline{r} \longrightarrow \sqrt{2} = \frac{q}{p} (\underline{r} - \underline{m})$ $z \frac{q(rn-sm)}{psn} , psn \neq 0 \longrightarrow C!$ Since $\frac{q(rn-sm)}{psn} \in \mathbb{Q}$ but $\sqrt{2} \notin \mathbb{Q}$ (by Th.) > m + V2 P is irrational numbers.

Theorem 3: Between any two distanct rationals there isnan irrational number.

Proof:

Let $\frac{m}{n}$, $\frac{p}{q}$ be two rationals and

$$\frac{m}{n} < \frac{p}{q} \rightarrow \frac{p}{q} - \frac{m}{n} > 0$$

$$\frac{m}{n} < \frac{m}{n} + \frac{\sqrt{2}}{2} \left(\frac{p}{q} - \frac{m}{n}\right)$$
Since $\frac{\sqrt{2}}{2} < 1 \rightarrow \frac{m}{n} < \frac{m}{n} + \frac{\sqrt{2}}{2} \left(\frac{p}{q} - \frac{m}{n}\right)$

$$\rightarrow \qquad < \frac{m}{n} + 1 \left(\frac{p}{q} - \frac{m}{n}\right) = \frac{p}{q}$$
Since (by theorem 2) $\frac{m}{n} + \frac{\sqrt{2}}{2} \left(\frac{p}{q} - \frac{m}{n}\right)$ is irrational.

Then there is an irrational between $\frac{m}{n}$ and $\frac{p}{q}$

Definition :

University of Anbar		Third Year — First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 1	By: Dr. Rifaat Saad Abdul-Jabbar

A decimal is an expression of the form :

 $\pm a_0$. $a_1a_2a_3$... such that a_0 is non-negative and a_1 , a_2a_3 , ... are called digits which may:

- Finite decimal
- Infinite decimal which may be *recurring* or *nonrecurring*

Example:

1- 2.3456 = 2 +
$$\frac{3}{10}$$
 + $\frac{4}{100}$ + $\frac{5}{1000}$ + $\frac{6}{10000}$ = $\frac{23456}{10^4}$
2- $\frac{3103}{9990}$ = 0.3016016016 ... = 0.3016 infinite recurring

Theorem 4: Between any two distanct irrationals there isn a rational number.

Proof:

Let a and b be two irrational and a

b. since $a \neq b$ then there is a first decimal digit where a and b differ.

$$\rightarrow a = a_0 \cdot a_1 a_2 a_3 \dots a_{n-1} a_n$$
$$\rightarrow b = b_0 \cdot b_1 b_2 b_3 \dots b_{n-1} b_n$$

and $a_n < b_n$

chose $x = a_0 . a_1 a_2 a_3 ... a_{n-1} b_n$ then a < x < b

and = $a_0. a_1 a_2 a_3 \dots a_{n-1} b_n = \frac{=a_0 a_1 a_2 a_3 \dots a_{n-1} b_n}{10^n} = a$

example

 $let_{b=2.12345342}^{a=2.12345153} \} a < b$

$$x = 2.12345300, \ a < x < b$$

Exercise : Give another proof for theorem 3 and theorem 4.

d Year – First Semester
Mathematical analysis
ifaat Saad Abdul-Jabbar

References

1- Principles Of Mathematical Analysis - W.Rudin. <u>https://59clc.files.wordpress.com/2012/08/functional-analysis-_-</u> <u>rudin-2th.pdf</u>