University of Anbar
 Collage of Science

Department of Applied Mathematics

Third Year - First Semester
 Lectures in Mathematical analysis

By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 2
Basic definitions

Definition

We say that the set F is field if there exist two binary operations

+ and such that:

$$
\begin{aligned}
& +: F \times F \rightarrow F \\
& \quad(x, y) \rightarrow x+y \in F
\end{aligned}
$$

$$
\begin{aligned}
& \cdot: F \times F \rightarrow F \\
& \quad(x, y) \rightarrow x \cdot y \in F, \quad x, y \neq 0
\end{aligned}
$$

and :

1. $(F,+)$ is commutative group
2. $(F \backslash\{0\}, \cdot)$ is commutative group.
3. $\left.\begin{array}{c}x \cdot(y+z)=x \cdot y+x \cdot z \\ (x+y) \cdot z=x \cdot z+y \cdot z\end{array}\right\} \quad \forall x, y, z \in F$ distribution law

We write $(F,+, \cdot)$ is a field.
Definition (ordered field)
We say that the field F is ordered if:

1. $\forall x, y \in F$, one and only one relation is true:

$$
x<y, \quad y<x \quad \text { or } x=y
$$

2. If $a<b$ and $b<c$ then $a<c$
3. If $a<b$ then $a+c<b+c, \forall c \in F$. + preserves ordering.
4. $0<x$ and $0<y$ then $0<x y$
5. $x<y$ and $0<z$ then $x z<y z$

Then $(F,+, \cdot,<)$ is ordered field.
The axiom of arithmetic of \mathbb{R} (field)
Define two functions:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}(x, y) \rightarrow x+y \in \mathbb{R}$
$\cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}(x, y) \rightarrow x \cdot y \in \mathbb{R}$
And
A1- $(a+b)+c=a+(b+c)$
A2- $a+b=b+a$
A3- there exists a unique element $0 \in \mathbb{R} \ni a+0=0+a=a$
A4- $\forall a \in \mathbb{R}$, there exists a unique element $x \in \mathbb{R} \ni a+x=a+$ $x=0$.
(A1-A4) imply that $(\mathbb{R},+)$ is commutative group.
A5- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
A6- $a \cdot b=b \cdot a$

A7- there exists a unique element $1 \in \mathbb{R} \ni a \cdot 1=1 \cdot a=a$
A8- $\forall a \neq 0, a \in \mathbb{R}$, there exists a unique element $x \in \mathbb{R}$
$\ni a \cdot x=a \cdot x=1$.
i.e. $x=a^{-1}=\frac{1}{a}$
(A5-A8) imply that $(\mathbb{R} \backslash\{0\}, ;)$ is commutative group.
A9- distribution law : $a \cdot(b+c)=a \cdot b+a \cdot c$

$$
(a+b) \cdot c=a \cdot c+b \cdot c
$$

(A1-A9) imply that $(\mathbb{R},+, \cdot)$ is a field.
A10- either $a<b, b<a$ or $a=b$
A11- $a<b$ and $b<c \rightarrow a<c$
A12- $0<a$ and $0<b \rightarrow 0<a \cdot b$
A13- $a<b \rightarrow a+c<b+c, \quad \forall c \in \mathbb{R}$.
A14- $a<b$ and $a<c$ then $a \cdot c<b \cdot c$
(A1-A14) imply that $(\mathbb{R},+, \cdot,<)$ is an ordered field.
$\mathbb{R}^{+}=\{x \in \mathbb{R}, 0<x$ or $x=0\}$
$\mathbb{R}^{-}=\{x \in \mathbb{R}, x<0$ or $x=0\}$
$\mathbb{R}^{++}=\{x \in \mathbb{R}, 0<x\}$
Let $a \in \mathbb{R}, a$ is called $:\left\{\begin{array}{c}\text { positive if } 0<a \\ \text { negative if } a<0 \\ \text { non - negative if } 0<a \text { or } a=0 \\ \text { non - positive if } a<0 \text { or } a=0\end{array}\right.$
Ex: \mathbb{Q} is an ordered field
Exercise: prove that $0 \leq x^{2}$ for any $x \in \mathbb{R}$
Definition: Absolute value
Let $a \in \mathbb{R}$ the absolute value of a is defined as:

$$
|a|=\left\{\begin{array}{cc}
a & \text { if } 0>a \\
0 & \text { if } a=0 \\
-a & \text { if } a>0
\end{array}\right.
$$

On the other hand, we can see $|$.$| is a function defined on \mathbb{R}$ into \mathbb{R}^{+}i.e. |.|: $\mathbb{R} \rightarrow \mathbb{R}^{+}$.

Properties of absolute value function:

1. $a \leq$
2. $|a|^{2} \leq a^{2}$
3. $|a b|=|a||b|$ and $\frac{|a|}{|b|}=\left|\frac{a}{b}\right|$
4. $|a+b| \leq|a|+|b|$

$$
|a-b| \geq||a|-|b||
$$

5. $|a|=\max \{a,-a\},-|a|=\min \{a,-a\}$
6. If $\epsilon>0$ then $|a-b|<\epsilon \leftrightarrow b-\epsilon<a<b+\epsilon$

Definition : let $S \subset \mathbb{R}, S$ is said to be bounded above if there is same real M such that: $x \leq M \quad \forall x \in S$.

M is called upper bound for S .
Definition M^{\prime} is called the least upper bound (or supremum) of S if:
1- M^{\prime} is an upper bound of S
2- $M^{\prime} \leq M$ for all M, where M is an upper bound of S .
Notes: 1. M^{\prime} (if exists) is unique (check)
2. we denote to M^{\prime} by L.U.B(S) or $\sup (S)$

Definition Let $S \subset \mathbb{R}, S$ is said to be bounded below if there is some $m \in \mathbb{R}$ s.t. $m \leq x, \forall x \in S$ m is called lower bound
Definition m^{\prime} is called the greatest lower bound (or infemum) of S if:
$1-m^{\prime}$ is a lower bound of S
2- $m \leq m^{\prime}$ for all m, where m is an lower bound of S.
Notes: 1. m^{\prime} (if exists) is unique (check)
2. we denote to m^{\prime} by $\operatorname{glb}(S)$ or $\inf (S)$

Definition : Let $S \subset \mathbb{R}, S$ is called:

1. Unbounded above if there is no upper bound.
2. Unbounded below if there is no lower bound.
3. Unbounded= Unbounded above+ Unbounded below

Exercises

1. Prove that $\mathbb{R}^{+}=\{x \in \mathbb{R}, x \geq 0\}$ is bounded below and unbounded above.
2. Prove that $\mathbb{R}^{-}=\{x \in \mathbb{R}, x \leq 0\}$ is bounded above and unbounded below.
3. Find $\sup (S)$ and $\inf (S)$ where:
$S=[0,1), \quad S=[0,1), \quad S=\mathbb{N}$
$S=(0, \infty), \quad S=\left\{\frac{1}{n}, n=1,2,3, \ldots\right\}$
$S=\left\{x \in \mathbb{R}, x^{2}-9>0\right\}$
4. Let A, B be two bounded sets and $A \subseteq B$.

Prove that: $a) \sup (A) \leq \sup (B)$
b) $\inf (B) \leq \inf (A)$
5. If a, b are two real numbers $\ni a \leq b+\epsilon, \forall \epsilon>0$, then $a \leq b$

References

1- Principles Of Mathematical Analysis - W.Rudin. https://59clc.files.wordpress.com/2012/08/functional-analysis-rudin-2th.pdf

