University of Anbar

Collage of Science

Department of Applied Mathematics

Third Year – First Semester

Lectures in Mathematical analysis

By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 2

Basic definitions

University of Anbar		Third Year – First Semester		
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar		
Definition				
We say that the set F is field if there exist two binary operations				
$+ and \cdot$ such that:				
$+: F \times F \to F$				
$(x, y) \rightarrow x + y \in H$	7			
$\cdot: F \times F \to F$				
$(x,y) \to x \cdot y \in F,$	$x, y \neq 0$			
and :				
1. $(F, +)$ is commutative g	roup			
2. $(F \setminus \{0\}, \cdot)$ is commutating	ive group.			
3. $ \begin{array}{l} x \cdot (y+z) = x \cdot y + x \cdot z \\ (x+y) \cdot z = x \cdot z + y \cdot z \end{array} \} \forall x, y, z \in F \text{ distribution law} \end{array} $				
				We write $(F, +, \cdot)$ is a field.
Definition (ordered field)				
We say that the field F is order	red if:			
1. $\forall x, y \in F$, one and only	one relation is	s true:		
x < y,	y < x	or $x = y$		
2. If $a < b$ and $b < c$ then	a < c			
3. If $a < b$ then $a + c < b$	$0 + c$, $\forall c \in F$. + preserves ordering.		
4. $0 < x$ and $0 < y$ then 0	$\langle xy$			
5. $x < y$ and $0 < z$ then xz	x < yz			
Then $(r, +, \cdot, <)$ is of det The axiom of arithmetic of \mathbb{P} ((field)			
The axiom of arthinetic of \mathbb{R} (lieiuj			
$\bot : \mathbb{R} \times \mathbb{R} \to \mathbb{R} (x, y) \to 0$	$x \perp y \in \mathbb{R}$			
$:: \mathbb{R} \times \mathbb{R} \to \mathbb{R} (x, y) \to \mathbb{R}$	$x + y \in \mathbb{R}$			
And				
A1- $(a + b) + c = a + (a + b)$	(b+c)			
A2 - a + b = b + a	5 1 0)			
A3- there exists a uniqu	e element 0 ∈	$\mathbb{R} \ni a + 0 = 0 + a = a$		
A4- $\forall a \in \mathbb{R}$. there exists	s a unique elem	hent $x \in \mathbb{R} \ni a + x = a + a$		
x = 0.				
(A1- A4) imply that (\mathbb{R} , -	+) is commutat	tive group.		
$A5-(a \cdot b) \cdot c = a \cdot (b \cdot c)$	c)			
A6- $a \cdot b = b \cdot a$	-			

University of Anbar Department of Applied Mathematics		Third Year — First Semester Lectures in Mathematical analysis			
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar			
A7- there exists a unique element $1 \in \mathbb{R} \ni a \cdot 1 = 1 \cdot a = a$					
A8- $\forall a \neq 0, a \in \mathbb{R}$, there exists a unique element $x \in \mathbb{R}$					
$iii a \cdot x = a \cdot x = 1$	l.				
i.e. $x = a^{-1} = \frac{1}{a}$					
(A5- A8) imply that (1	$\mathbb{R} \setminus \{0\}, \cdot$) is commu	itative group.			
A9- distribution law : $a \cdot (b + c) = a \cdot b + a \cdot c$					
$(a+b) \cdot c = a \cdot c + b \cdot c$					
(A1-A9) imply that $(\mathbb{R}, +, \cdot)$ is a field.					
A10- either $a < b, b < b$	< a or a = b				
A11- $a < b$ and $b < c$	$c \rightarrow a < c$				
A12-0 < a and 0 < b	$b \to 0 < a \cdot b$				
A13- $a < b \rightarrow a + c < b$	$< b + c$, $\forall c \in \mathbb{C}$	R.			
A14- $a < b$ and $a < c$	then $a \cdot c < b \cdot c$				
(A1-A14) imply that $(\mathbb{R}, +, \cdot, <)$ is an ordered field.					
$\mathbb{R}^+ = \{ x \in \mathbb{R}, 0 < x \text{ or } x = 0 \}$					
$\mathbb{R}^- = \{x \in \mathbb{R}, x < 0 \text{ or } x = 0\}$					
\mathbb{R}^+	$x^+ = \{x \in \mathbb{R}, 0 < x\}$	¢ }			
	(posit	ive if 0 < a			
Let $a \in \mathbb{R}$, a is called) negat	tive if $a < 0$			
	non – negati	$ve if \ 0 < a \text{ or } a = 0$			
Fx: M is an ordered fi	old	$\int e i j u < 0 0 i u = 0$			
Ex: ψ is an ordered lield Evencice : prove that $0 < x^2$ for any $x \in \mathbb{D}$					
Definition: Absolutes	$0 \leq x$ for any x				
Let $a \in \mathbb{R}$ the absolute	te value of a is de	fined as:			
Let $a \in \mathbb{R}$ the absolute value of a 1s defined as: $\begin{pmatrix} a & if 0 > a \end{pmatrix}$					
a	$= \begin{cases} a & i \neq 0 \\ 0 & i \neq a = \end{cases}$	0			
11	$\left -a \right $ if $a > $	> 0			
On the other hand. w	e can see . is a f	function defined on $\mathbb R$ into			
\mathbb{R}^+ i.e. $. : \mathbb{R} \to \mathbb{R}^+$.					
Properties of absolut	e value function:				

1. $a \le$ 2. $|a|^2 \le a^2$ 3. $|ab| = |a||b| \text{ and } \frac{|a|}{|b|} = \left|\frac{a}{b}\right|$ 4. $|a+b| \le |a|+|b|$

University of Anbar		Third Year — First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar

 $|a-b| \ge ||a| - |b||$

5. $|a| = \max\{a, -a\}, -|a| = \min\{a, -a\}$

6. If $\epsilon > 0$ then $|a - b| < \epsilon \leftrightarrow b - \epsilon < a < b + \epsilon$

Definition : let $S \subset \mathbb{R}$, *S* is said to be bounded above if there is same real M such that: $x \leq M \quad \forall x \in S$.

M is called upper bound for S.

Definition M' is called the least upper bound (or supremum) of S if:

1- *M*′ is an upper bound of S

2- $M' \leq M$ for all M, where M is an upper bound of S.

Notes: 1. *M*′ (if exists) is unique (check)

2. we denote to *M*′ by L.U.B(S) or *sup*(*S*)

Definition Let $S \subset \mathbb{R}$, *S* is said to be bounded below if there is some

 $m \in \mathbb{R}$ s. t. $m \leq x$, $\forall x \in S$

m is called lower bound

Definition m' is called the greatest lower bound (or infemum) of S if:

1- m' is a lower bound of S

2- $m \leq m'$ for all *m*, where *m* is an lower bound of *S*.

Notes: 1. m' (if exists) is unique (check)

2. we denote to m' by glb(S) or inf(S)

Definition : Let $S \subset \mathbb{R}$, S is called:

1. Unbounded above if there is no upper bound.

2. Unbounded below if there is no lower bound.

3. Unbounded= Unbounded above+ Unbounded below Exercises

- 1. Prove that $\mathbb{R}^+ = \{x \in \mathbb{R}, x \ge 0\}$ is bounded below and unbounded above.
- 2. Prove that $\mathbb{R}^- = \{x \in \mathbb{R}, x \le 0\}$ is bounded above and unbounded below.

3. Find sup(*S*) and inf(*S*) where:

$$S = [0,1), \quad S = [0,1), \quad S = \mathbb{N}$$

 $S = (0,\infty), \quad S = \{\frac{1}{n}, n = 1,2,3,...\}$
 $S = \{x \in \mathbb{R}, x^2 - 9 > 0\}$

4. Let A, B be two bounded sets and $A \subseteq B$. Prove that: a) sup $(A) \le \sup(B)$ b) inf $(B) \le \inf(A)$

5. If *a*, *b* are two real numbers $\exists a \leq b + \epsilon$, $\forall \epsilon > 0$, then $a \leq b$

University of Anbar		Third Year — First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar

References

1- Principles Of Mathematical Analysis - W.Rudin. <u>https://59clc.files.wordpress.com/2012/08/functional-analysis-_-</u> <u>rudin-2th.pdf</u>