University of Anbar
 Collage of Science
 Department of Applied Mathematics

Third Year - First Semester
Lectures in Mathematical analysis
By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 4

Functions

Definition: (Function)
Consider two sets A and B, assigning to each element in A to some element in B which denoted by $f(x)$, for $x \in A$. Then f is said to be a function from A to B (or mapping). The set A is called domain of $f, f(x)$ is called value of x, the set of all values is called range of f. Definition:

If f is a function from the set A to the set B , let $E \subset A, f(E)$ is the set of all values of $x \in E$, we call it the image of E under f.

Definition:

If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence or A and B have the same cardinal number or $A \sim B$ (A equivalent to B)

Definition:

For any positive integer n, let $J_{n}=\{1,2,3, \ldots, n\}$, then for any set A, we say that:
(a)- A is finite if $A \sim J_{n}$ for some n . (ϕ is finite)
(b) A is countable if $A \sim J=\mathbb{N} \backslash\{0\}$.
(c)- A is infinite if A is not finite.
(d)- A is uncountable if A is neither finite nor countable.
(e) A is at most countable if A is finite or countable.

Example

The set of all integers \mathbb{Z} is countable.
Consider the following arrangement:

$$
\begin{aligned}
\mathbb{Z} & =\{0,1,-1,2,-2, \ldots\} \\
J & =\{1,2,3,4,5, \ldots\}
\end{aligned}
$$

Or define the following mapping:

$$
f: J \rightarrow \mathbb{Z} \text { as: }
$$

$$
f(n)=\left\{\begin{array}{lr}
\frac{n}{2} & n \text { is even } \\
-\frac{n-1}{2} & n \text { is odd }
\end{array}\right.
$$

Definition: (Sequence)
By a sequence, we mean a function f defined on the set S of all positive integers denoted by $\left\{x_{n}\right\}$, where $x_{n}=f(n)$, called a terms of the sequence.

Example $\{2 n\}=\{2,4,6,8, \ldots\}$
Theorem Every infinite subset of a countable set A is countable.
Proof: Suppose $E \subset A$ and E is infinite, arrange the elements x of A in a sequence $\left\{x_{n}\right\}$ of distinct elements, construct a sequence $\left\{n_{k}\right\}$ as:

Let n_{1} be the smallest positive integer s.t. $x_{n_{1}} \in E$,
Let n_{2} be the smallest positive integer greater than n_{1} s.t. $x_{n_{2}} \in E$, and so on

Putting $f(k)=x_{n_{k}}, k=1,2, \ldots$
We obtain a 1-1 correspondence between A and J.
Then E is countable.
Example : \mathbb{Q} is countable.
Consider the following arrangement:

References

1- Principles Of Mathematical Analysis - W.Rudin. https://59clc.files.wordpress.com/2012/08/functional-analysis-_-rudin-2th.pdf

