University of Anbar Department of Applied Mathematics Collage of Science Third Year — First Semester Lectures in Mathematical analysis By: Dr. Rifaat Saad Abdul-Jabbar

University of Anbar

Lecture No. 4

Collage of Science

Department of Applied Mathematics

Third Year – First Semester

Lectures in Mathematical analysis

By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 4

Functions

University of Anbar		Third Year – First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 4	By: Dr. Rifaat Saad Abdul-Jabbar

Definition: (Function)

Consider two sets A and B, assigning to each element in A to some element in B which denoted by f(x), for $x \in A$. Then f is said to be a *function* from A to B (or mapping). The set A is called *domain* of f, f(x) is called value of x, the set of all values is called *range* of f. **Definition**:

If *f* is a function from the set A to the set B, let $E \subset A$, f(E) is the set of all values of $x \in E$, we call it the *image* of *E* under *f*.

Definition:

If there exists a 1 - 1 mapping of *A* onto *B*, we say that A and B can be put in 1-1 correspondence or A and B have the same cardinal number or $A \sim B$ (A equivalent to B)

Definition:

For any positive integer n, let $J_n = \{1, 2, 3, ..., n\}$, then for any set A, we say that:

(a)- *A* is *finite* if $A \sim J_n$ for some n. (ϕ is finite)

(b)- *A* is *countable* if $A \sim J = \mathbb{N} \setminus \{0\}$.

(c)- *A* is *infinite* if A is not finite.

(d)- *A* is *uncountable* if *A* is neither finite nor countable.

(e)- *A* is *at most countable* if *A* is finite or countable.

Example

The set of all integers \mathbb{Z} is countable.

Consider the following arrangement:

 $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$

 $J = \{1, 2, 3, 4, 5, \dots\}$

Or define the following mapping:

 $f: J \to \mathbb{Z}$ as:

University of Anbar Department of Applied Mathematics Collage of Science Third Year — First Semester Lectures in Mathematical analysis By: Dr. Rifaat Saad Abdul-Jabbar

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ is even} \\ -\frac{n-1}{2} & n \text{ is odd} \end{cases}$$

Definition: (Sequence)

By a sequence , we mean a function f defined on the set S of all positive integers denoted by $\{x_n\}$, where $x_n = f(n)$, called a terms of the sequence.

Lecture No. 4

Example $\{2n\} = \{2,4,6,8,...\}$

Theorem Every infinite subset of a countable set A is countable.

Proof: Suppose $E \subset A$ and E is infinite, arrange the elements x of A in a sequence $\{x_n\}$ of distinct elements, construct a sequence $\{n_k\}$ as:

- Let n_1 be the smallest positive integer $s. t. x_{n_1} \in E$,
- Let n_2 be the smallest positive integer greater than $n_1 \ s. t. \ x_{n_2} \in E$, and so on

Putting $f(k) = x_{n_k}$, k = 1, 2, ...

We obtain a 1-1 correspondence between A and J.

Then *E* is countable.

Example : \mathbb{Q} is countable.

Consider the following arrangement:

University of Anbar		Third Year — First Semester
Department of Applied Mathematics		Lectures in Mathematical analysis
Collage of Science	Lecture No. 4	By: Dr. Rifaat Saad Abdul-Jabbar

References

1- Principles Of Mathematical Analysis - W.Rudin. <u>https://59clc.files.wordpress.com/2012/08/functional-analysis-_-</u> <u>rudin-2th.pdf</u>