University of Anbar Department of Applied Mathematics Collage of Science Fourth Year – First Semester Lectures in Functional analysis By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 2

University of Anbar

Collage of Science

Department of Applied Mathematics

Fourth Year – First Semester

Lectures in Functional analysis

By: Lecturer Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 2

Open Set, Closed Set, Neighborhood

Fourth Year — First Semester Lectures in Functional analysis By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 2

Open Set, Closed Set, Neighborhood

We first consider important types of subsets of a given metric space X = (X, d).

Definition (Ball and sphere). Given a point $x_{\circ} \in X$ and a real number r > 0, we define three types of sets.

- a. $B(x_0; r) = \{x \in X : d(x, x_0) < r\}$ (Open ball)
- b. $\widetilde{B}(x_0; r) = \{x \in X : d(x, x_0) \le r\}$ (Close ball)
- C. $S(x_0; r) = \{x \in X : d(x, x_0) = r\}$ (Shell)

In all three cases, *xo* is called the *center* and *r* the *radius*.

We see that an open ball of radius r is the set of all points in X whose distance from the center of the ball is less than r. Furthermore, the definition immediately implies that

$$S(x_0; r) = \tilde{B}(x_0; r) - B(x_0; r)$$

Warning. In working with metric spaces, it is a great advantage that we use a terminology which is analogous to that of Euclidean geometry. However, we should beware of a danger, namely, of assuming that balls and spheres in an arbitrary metric space enjoy the same properties as balls and spheres in \mathbb{R}^3 . This is not so. An unusual property is that a sphere can be empty. For example, in a discrete metric space we have $S(x_0; r) = \phi$ 0 if $r \neq 1$. (What about spheres of radius 1 in this case?).

Let us proceed to the next two concepts, which are related.

Definition (Open set, closed set). A subset *M* of a metric space X is said to be *open* If It contains a ball about each of its points. A subset *K* of X is said to be *closed* if its complement (in X) is open, that is, $K^c = X - K$ is open.

The reader will easily see from this definition that an open ball is an open set and a closed ball is a closed set.

An open ball *B* (x_0 ; ϵ) of radius ϵ is often called an ϵ -*neighborhood* of *x*₀. By a neighborhood of x_0 we mean any subset of X which contains an ϵ -neighborhood of x_0

We see directly from the definition that every neighborhood of x_0 contains x_0 ; in other words, x_0 is a point of each of its neighborhoods. And if N is a neighborhood of x_0 and $N \subset M$, then M is also a neighborhood of x_0 . We call x_0 an interior point of a set $M \subset X$ if M is a neighborhood of x_0 . The interior of M is the set of all interior points of M and may be denoted by M^0 or *Int* (M), but there is no generally accepted notation. *Int* (M) is open and is the largest open set contained in M

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar

It is not difficult to show that the collection of all open subsets of X, call it \mathbb{T} , has the following properties:

(T1) $\phi \in \mathbb{T}$, $X \in \mathbb{T}$

(T2) The union of any members of \mathbb{T} is a member of \mathbb{T} .

(T3) The intersection of finitely many members of \mathbb{T} is a member of \mathbb{T} .

Proof. (T1) follows by noting that ϕ is open since ϕ has no elements and, obviously, X is open. We prove (T2). Any point x of the union U of open sets belongs to (at least) one of these sets, call it M, and M contains a ball B about x since M is open. Then $B \subset U$, by the definition of a union. This proves (T2). Finally, if y is any point of the intersection of open sets $M_{1,r} \dots M_n$, then each M_i contains a ball about y and a smallest of these balls is contained in that intersection. This proves (T3).

We mention that the properties (T1) to (T3) are so fundamental that one wants to retain them in a more general setting. Accordingly, one defines a topological space (X, \mathbb{T}) to be a set X and a collection \mathbb{T} of subsets of X such that \mathbb{T} satisfies the *axioms* (T1) to (T3). The set \mathbb{T} is called *a topology for* X. From this definition we have: A metric space is a topological space

Open sets also play a role in connection with continuous mappings, where continuity is a natural generalization of the continuity known from calculus and is defined as follows.

Definition (Continuous mapping). Let X = (X, d) and $Y = (Y, \overline{d})$ be metric spaces. A mapping $T: X \to Y$ is said to be *continuous at a point* $x_0 \in X$ if for every $\epsilon > 0$ there is a $\delta > 0$ such that

 $\overline{d}(Tx, Txo) < \epsilon$ for all x satisfying $d(x, xo) < \delta$. *T* is said to be *continuous* if it is continuous at every point of X.

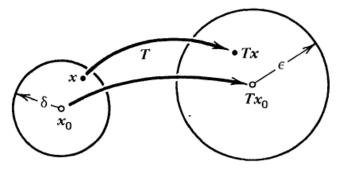


Figure 2. Illustration of definition of continuous function in case of Euclidian space $Y = \mathbb{R}^2$

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar

Theorem (Continuous mapping). A mapping T of a metric space X into a metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

Proof. (a) Suppose that *T* is continuous. Let $S \subset Y$ be open and S_0 the inverse image of S. If $S_0 = \phi$, it is open. Let $S_0 \neq \phi$. For any $x_0 \in S_0$ let $y_0 = Tx_0$; Since S is open, it contains an ϵ -neighborhood N of y_0 . Since T is continuous, x_0 has a δ -neighborhood N_0 , which is mapped into N. Since $N \subset S$, we have $N_0 \subset S_0$, so that S_0 is open because $x_0 \in S_0$ was arbitrary.

(b) Conversely, assume that the inverse image of every open set in Y is an open set in X. Then for every $x_0 \in X$ and any ϵ -neighborhood N of Tx_0 -; the inverse image N_0 of N is open, since N is open, and N_0 contains x_0 . Hence N_0 also contains a δ -neighborhood of x_0 ., which is mapped into N because N_0 . is mapped into N. Consequently, by the definition, T is continuous at x_0 . Since $x_0 \in X$ was arbitrary, T is continuous.

We shall now introduce two more concepts, which are related. Let M be a subset of a metric space X. Then a point x_0 . of X (which mayor may not be a point of M) is called an accumulation point of M (or *limit point* of M) if every neighborhood of x_0 contains at least one point $Y \in M$ distinct from x_0 . The set consisting of the points of M and the accumulation points of M is called the closure of M and is denoted by \overline{M} . It is the smallest closed set containing M.

Before we go on, we mention another unusual property of balls in a metric space. Whereas in \mathbb{R}^3 the closure $\overline{B(x_0; r)}$ of an open ball $B(x_0; r)$ is the closed ball $\tilde{B}(x_0; r)$, this may not hold in a general metric space.

Using the concept of the closure, let us give a definition which will be of particular importance in our further work:

Definition (**Dense set, separable space**). A subset M of a metric space X is said to be *dense in* X if

$\overline{M} = X$.

X is said to be *separable* if it has a countable subset which is dense in X. **Examples**

1. Real line \mathbb{R} . *is separable*.

Proof. The set \mathbb{Q} of all rational numbers is countable and is dense in \mathbb{R} .

2. Complex plane \mathbb{C} . The complex plane \mathbb{C} is separable.

Proof. A countable dense subset of \mathbb{C} is the set of all complex numbers whose real and imaginary parts are both rational.

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 2	By: Dr. Rifaat Saad Abdul-Jabbar

3. Discrete metric space. A discrete metric space X is separable if and only if X is countable.

Proof The kind of metric implies that no proper subset of X can be dense in X. Hence the only dense set in X is X itself, and the statement follows.

4. The Space l^{∞} is not separable.

Proof. Let $y = (\eta_1, \eta_2, \eta_3, ...)$ be a sequence of zeros and ones. Then $y \in l^{\infty}$. With y we associate the real number \hat{y} whose binary representation is

$$\frac{\eta_1}{2^1} + \frac{\eta_2}{2^2} + \frac{\eta_3}{2^3} + \cdots.$$

We now use the facts that the set of points in the interval [0,1] is uncountable, each $\hat{y} \in [0,1]$ has a binary representation, and different \hat{y} 's have different binary representations. Hence there are uncountably many sequences of zeros and ones. The metric on l^{∞} shows that any two of them which are not equal must be of distance 1 apart. If we let each of these sequences be the center of a small ball, say, of radius 1/3, these balls do not intersect and we have uncountably many of them. If M is any dense set in l^{∞} , each of these nonintersecting balls must contain an element of M. Hence M cannot be countable. Since M was an arbitrary dense set, this shows that l^{∞} cannot have dense subsets which are countable. Consequently, l^{∞} is not separable.

Problems

1. If x_0 is an accumulation point of a set $A \subset (X, d)$, show that any neighborhood of x_0 contains infinitely many points of A.

2. (Continuous mapping) Show that a mapping $T: X \to Y$ is continuous if and only if the inverse image of any closed set $M \subset Y$ is a closed set in X.

3. Show that the image of an open set under a continuous mapping need not be open.

University of A	nbar
-----------------	------

Department of Applied Mathematics

Fourth Year – First Semester Lectures in Functional analysis

Collage of Science

Lecture No. 2

By: Dr. Rifaat Saad Abdul-Jabbar

References

1-Kreyszig, Erwin. Introductory functional analysis with applications,1978. https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%20Functional%20Analysis%20with%20Applications%20(1).pdf

2- Functional Analysis, Second Edition, Walter Rudin,1991. https://59clc.files.wordpress.com/2012/08/functional-analysis-_-rudin-2th.pdf