University of Anbar Department of Applied Mathematics Collage of Science Fourth Year – First Semester Lectures in Functional analysis By: Dr. Rifaat Saad Abdul-Jabbar

Lecture No. 3

University of Anbar

Collage of Science

Department of Applied Mathematics

Fourth Year – First Semester

Lectures in Functional analysis

By: Dr. Lecturer Rifaat Saad Abdul-Jabbar

Lecture No. 3

Convergence., Cauchy Sequence., Completeness

Convergence., Cauchy Sequence., Completeness

Definition (Convergence of a sequence, limit). A sequence (x_n) in a metric space X = (X, d) is said to *converge* or to *be convergent* if there is an $x \in X$ such that

$$\lim_{n\to\infty}d(x_n-x)=0$$

x is called the *limit* of (x_n) and we write

$$\lim_{n\to\infty}(x_n)=x$$

or simply:

 $x_n \rightarrow x$

We say that (x_n) converges to x or has the limit x. If (x_n) is not convergent, it is said to be divergent.

Definition

We call a nonempty subset $M \in X$ a *bounded set* if its *diameter*:

 $\delta(M) = \sup d(x, y), \qquad x, y \in M$

is finite. And we call a sequence $x_n \text{ in } X$ a bounded sequence If the corresponding point set is a bounded subset of X.

Lemma (Boundedness, limit).

Let X = (X, d) be a metric space. Then:

(a) A convergent sequence in is bounded and its limit is unique.

(b) If $x_n \to x$ and $y_n \to y$ in X, then $d(x_n, y_n) \to d(x, y)$.

Proof. (a) Suppose that $x_n \rightarrow x$. Then, taking e = 1, we can

find an N such that d $(x_n, x) < 1$ for all n > N. Hence by the triangle

inequality (M4), for all n we have $d(x_n, x) < 1 + a$ where

$$a = max \{d(x_1, x), \dots, d(x_N, x)\}.$$

This shows that (x_n) is bounded.

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 3	By: Dr. Rifaat Saad Abdul-Jabbar

Assuming that $x_n \to x$ and $x_n \to z$, we obtain from (M4)

 $0 \le d(x, z) \le d(x, x_n) + d(x_n, z) \to 0 + 0$

and the uniqueness x = z of the limit follows from (M2).

(b) We know that

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$$

Then we obtain

$$d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(y_n, y)$$

and a similar inequality by interchanging x_n and x and y_n and y and multiplying by -1. Together,

$$\left|d(x_n, y_n) - d(x, y)\right| \le d(x_n, x) + d(y_n, y) \to 0 \text{ as } n \to \infty$$

Definition (Cauchy sequence, completeness). A sequence (x_n) in a metric space X = (X, d) is said to be Cauchy (or fundamental) if for every $\epsilon > 0$ there is an $N = N(\epsilon)$ such that

$$d(x_n, x_m) < \epsilon \qquad \forall m, n > N$$

The space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem (Real line). *The real line is complete metric spaces.*

Example

Let X = (0, 1], with the usual metric defined by d(x, y) = |x - y|, and the sequence (x_n) , where $x_n = 1/n$ and n = 1, 2, ... this is a Cauchy sequence, but it does not converge, because the point 0 is not a point of X. **Theorem** (Convergent sequence). *Every convergent sequence in a metric space is a Cauchy sequence*.

Proof

If $x_n \to x$, then for every $\epsilon > 0$ there is an $N = N(\epsilon)$ such that

University of Anbar

Department of Applied Mathematics

Collage of Science

Lecture No. 3

Lectures in Functional analysis

Fourth Year – First Semester

By: Dr. Rifaat Saad Abdul-Jabbar

$$d(x_n, x) < \frac{\epsilon}{2}$$
, $\forall n > N$

Hence by the triangle inequality we obtain for m, n > N

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

This shows that (x_n) is Cauchy.

Theorem (Closure, closed set)

Let M be a nonempty subset of a metric space (X, d) and \overline{M} its closure Then

- (a) $x \in \overline{M}$ if and only if there is a sequence (x_n) in Msuch that
 - $x_n \rightarrow x$,
- (b) M is closed if and only if the situation $x_n \in M, x_n \to x$, implies That $x \in M$.

Proof.

(a) Let $x \in \overline{M}$.

If $x \in M$, a sequence of that type is (x, x, ...).

If $x \notin M$, it is a point of accumulation of M.

Hence for each n = 1, 2, ... the ball B(x: 1/n) contains an $x_n \in M$,

and $x_n \to x$ because $1/n \to 0$ as $n \to \infty$.

Conversely, if (x_n) is in M and $x_n \rightarrow x$,

then $x \in M$ for every neighborhood of x contains points $x_n \neq x$,

so that *x* is a point of accumulation of M.

Hence $x \in \overline{M}$, by the definition of the closure.

(b) M is closed if and only if $M = \overline{M}$, so that (b) follows directly from (a)

Theorem (Complete subspace). A subspace M of a complete metric space X

is itself complete if and only if the set M is closed in X.

Proof. Let *M* be complete. Then, for every $x \in M$ there is a sequence (x_n) in *M* which converges to *x*. Since (x_n) is Cauchy and M is complete, (*Every convergent sequence in a metric space is a Cauchy sequence.*)

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 3	By: Dr. Rifaat Saad Abdul-Jabbar

 (x_n) converges in M, the limit being unique.

Hence $x \in M$. This proves that M is closed because $x \in M$ was arbitrary.

Conversely, let M be closed and (x_n) Cauchy in M.

The $x_n \rightarrow x \in X$ n, which implies $x \in M$ by *above theorem* (*a*), and $x \in M$ since $M = \overline{M}$ by assumption.

Hence the arbitrary Cauchy sequence (x_n) converges in M, which proves completeness of M.

Theorem (Continuous mapping). A mapping $T: X \to Y$ of a metric space (X, d) into a metric space (Y, \overline{d}) is continuous at a point $x_n \in x$ if and only if

 $x_n \rightarrow x_0$ implies $Tx_n \rightarrow Tx_0$

Proof

Let T be continuous at x_0 then, for a given $\epsilon > 0 \exists \delta > 0$ such that

 $d(x, x_0) < \delta$ implies $\bar{d}(Tx, Tx_0) < \epsilon$

Let $x_n \to x_0$ then there is an N such that for all n > N we have $d(x_n, x_0) < \delta$ Hence for all n > N,

 $\bar{d}(Tx_n, Tx_0) < \epsilon$

By definition this means that $Tx_n \rightarrow Tx_0$

Conversely, we assume that

$$x_n \rightarrow x_0$$
 implies $Tx_n \rightarrow Tx_0$

and prove that then *T* is continuous at x_0 . Suppose this is false. Then there is an $\epsilon > 0$ such that for every $\delta > 0$ there is an $x \neq x_0$ satisfying

 $d(x, x_0) < \delta$ but $\overline{d}(Tx, Tx_0) \ge \epsilon$

In particular, for $\delta = 1/n$ there is an x_n satisfying

$$d(x_n, x_0) < 1/n \text{ but } \bar{d}(Tx_n, Tx_0) \ge \epsilon$$

Clearly $x_n \to x_0$ but (Tx_n) does not converge to Tx_0 . This contradicts $Tx_n \to Tx_0$ and proves the theorem.

University of Anbar		Fourth Year — First Semester
Department of Applied Mathematics		Lectures in Functional analysis
Collage of Science	Lecture No. 3	By: Dr. Rifaat Saad Abdul-Jabbar

References

1-Kreyszig, Erwin. Introductory functional analysis with applications,1978. https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%20Functional%20Analysis%20with%20Applications%20(1).pdf

2- Functional Analysis, Second Edition, Walter Rudin,1991. https://59clc.files.wordpress.com/2012/08/functional-analysis-_-rudin-2th.pdf