Lecture 11:

Chi-squared distribution

Characteristics of the Chi-Square Distribution:

- 1. It is not symmetric.
- 2. The values of X^2 are non-negative
- 3. The chi-square distribution is to the horizontal axis on the right-hand-side.
- 4. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's t-distribution and Fisher's F-distribution.
- 5. As the number of degrees of freedom increases, the chi-square distribution becomes more
- 6. Total area under the curve is equal to 1.0

Finding Critical Values of the Chi-Square Distribution:

Find the critical value of chisquare for a one-tail (right-tail) test with = 0.05 and df=15.

Figure 3

Degrees of	Area to the Right of the Critical Value									
Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1 2 3 4 5	0.010 0.072 0.207 0.412	0.020 0.115 0.297 0.554	0.001 0.051 0.216 0.484 0.831	0.004 0.103 0.352 0.711 1.145	0.016 0.211 0.584 1.064 1.610	2.706 4.605 6.251 7.779 9.236	3.841 5.991 7.815 9.488 11.071	5.024 7.378 9.348 11.143 12.833	6.635 9.210 11.345 13.277 15.086	7.879 10.597 12.838 14.860 16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.299
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.365	7.215	8.231	9.288	10.265	25.200	28.601	31.595	24.265	36.456

Chi-Square: A statistical test that exams the whole distributions, and the relationship between two distributions. In doing this, the data is not summarized into a single measure such as the mean, standard deviation or proportion. The whole distribution of the variable is examined, and inferences concerning the nature of the distribution are obtained

A goodness-of-fit test is a procedure used to determine whether a frequency distribution follows a claimed distribution. It is a test of the agreement or conformity between the observed frequencies (O) and the expected frequencies (E) for several classes or categories <u>Chi-square (\times^2)</u>; a statistical test used for category data that based on comparison of frequencies observed & expected in various categories.

- A statistical test of significance for 2 qualitative variables as if there is association, effect.

- Use 2 x 2 table , calculate d.f by (raw-1) \times (Colum-1)
- For 2 variables with more 2 categories use $K \times K$ table

Uses and Applications

- Used when you have frequency distribution of qualitative type of variables

- In 2X2 table, it is used to test whether there is an association between the row and the column variables; ie whether the distribution of individuals among the categories of one variable is independent of their distribution among the categories of the other

	Influenza	No influenza	Total
Vaccine	20	220	240
Placebo	80	140	220
Total	100	360	460

Example:

Influenza &vaccination trial

The questionis:

Is the difference (in the percentages of influenza) due to vaccination or occurred by chance? Vaccinated had influenza= $20 \times 100 / 100 = 20\%$ while non vaccinated had influenza= $80 \times 100 / 100 = 80\%$

Steps of test:

- Assume \times^2 distributions. Use 2 x 2 table
- Ho: there is no association between 2 variables, HA: there is association between 2 variables
- Level of significance (alpha) =0.05
- Calculate K---- df = (raw-1) × (Colum-1)

$$-(X^2) = \sum \frac{[O-E]^2}{E}$$

- Conclusion : Compare×² calculated with ×² tabulated : If ×² calculated is >×² tabulated reject the H₀ & accept H_A If ×² calculated is < ×² tabulated , accept H₀ & There is association between variables, If ×² calculated is <×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ If ×² calculated is < ×² tabulated .

disease						
	+ve	-ve				
Test +ve	А	В	A+B			
Test -ve	С	D	C+D			
	A+C	B+D	A+B+C+D=N			

 $(\mathbf{X}^2) = \sum \frac{[O-E]^2}{E}$

Where O = observed number

E = Expected number

Ea= $(A+C) \times (A+B)$, Or Ea = total raw a x total column a / total N Eb = $(B+A) \times (B+D)$, Or Eb = total raw b x total column b / total N

EC=
$$(C+A) \times (C+D)$$
, Or Ec = total raw c x total column c / total
N

 $ED = (D+C) \times (D+B)$, Or Ed = total raw d x total column d / total

Example; To assess the possible association between 100% oxygen therapy & development of retinal fibroplasia of 135 premature infants in intensive care units that the result. (alpha) =0.05

<u>Steps of test</u> : - Assume \times^2 distributions. - Use 2 x 2 table

- Ho: there is no association between 2 variables, HA: there is association between 2 variables

- Level of significance (alpha) =0.05
- Calculate K----df = $(raw-1) \times (Colum-1)$

$$-(X^2) = \sum \frac{[O-E]^2}{E}$$

- Conclusion : Compare×² calculated with ×² tabulated : If ×² calculated is >×² tabulated reject the H₀ & accept H_A If ×² calculated is < ×² tabulated , accept H₀ & There is association between variables, If ×² calculated is <×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ We will be the set of the

(X ²) =	$\sum \frac{[O-E]^{-2}}{E}$			
	oxygen therapy	Retinal fibro	oplasia	Total
		+ve	-ve	
	+ve	A 36	B 31	A+B 67
	-ve	C 22	D 46	C+D 68
	Total	A+C 58	B+D 77	N = 135

 $(X^2) = \sum [O-E]^2) / E$

Ea = $(a+b) \times (a+c)$ or total raw a x total column a / total = $(67) \times (58)$ =28.785

Eb = $(b+a) \times (b+d)$ or total raw b x total column b / total = $(67) \times (77)$ = 38.215

Ν

Ec= $(c+a) \times (c+d)$ or total raw c x total column c / total = $(58) \times (68)$ = 29.215

Ν

Ed = $(d+c) \times (d+b)$ or total raw d x total column d / total = $(68) \times (77)$ = 38.785

Ν

135

	CELL	Observed	Expected	(O-E)	([O-E] ²	([O-E] ²)/E
	А	36	28.785	7.215	52.215	1.808
	В	31	38.215	- 7.215	52.215	1.362
	С	22	29.215	- 7.215	52.215	1.781
	D	46	38.785	7.215	52.215	1.342
					TOTAL	6.293
X	$^{2}) = 6.293$	d f = (2-1) x (2-1) =1			

(X²) Cqi -Square Distribution Table

DF			Probability	(P Value)	
	0.50	0.10	0.05	0.01	.001
1	0.455	2.706	<mark>3.841</mark>	6.63	10.83
2	1.386	4.605	5.991	9.21	13.82
3	2.366	6.251	7.815	11.34	16.27
4	3.357	7.779	9.448	13.28	18.47
5	4.351	9.236	11.070	15.09	20.51

1	3	5	

135

135

From Chi -Square Distribution Table (3.841), calculated (×2)= 6.293> tabulated

 (\times^2) = 3.841 so p < 0.05& there is association between developments of retinol fibroplasia in premature infants & receiving 100% oxygen with non received.

Example; The following table shows mothers on contraceptive pills & their infants developed jaundice? The question if their relation or association between jaundice &pills & what is the **confidence interval** that the proportion of using pills was 57%.

C. P.P		Jaundice					
		+ve-ve					Total
Pills +ve	Α	33		I	3	26	57
Pills –ve	C	14		Ι)	45	59
Total		47		69			116

<u>Steps of test</u>: - Assume \times^2 distributions. - Use 2 x 2 table

- Ho: there is no association between 2 variables, HA: there is association between 2 variables

- Level of significance (alpha) =0.05
- Calculate K---- df = (raw-1) × (Colum-1)

$$-(X^2) = \sum \frac{[O-E]^2}{E}$$

- Conclusion : Compare×² calculated with ×² tabulated : If ×² calculated is >×² tabulated reject the H₀ & accept H_A If ×² calculated is < ×² tabulated , accept H₀ & There is association between variables, If ×² calculated is <×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ We will be the set of the

Ea= $(A+C) \times (A+B)$ (total raw a x total column a / total) = $(47) \times (57)$ = 23.09

Eb= $(B+A) \times (B+D)$ (total raw a x total column a / total) = $(57) \times (67)$ = 33.91

 $Ec = (C+A) \times (C+D)(\text{ total raw a x total column a / total}) = (47) \times (59) = 23.91$

Ed = $(D+C) \times (D+B)($ total raw a x total column a / total) = $(59) \times (69) = 35.09$

Ν

Ν

116

Cell	Observed	Expected	(O-E)	([O-E] ²	([O-E] ²)/E
А	33	23.09	9.91	98.21	4.25
В	24	33.91	-9.91	98.21	2.90
С	14	23.91	-9.91	98.21	4.11
D	45	35.09	9.91	98.21	2.73
				TOTAL	13.99

 $(X^2) = 13.99$ d f = 1, (alpha) = 0.05

χ^2 (Chi-Squared) Distribution: Critical Values of χ^2

Degrees of freedom	5%	1%	0.1%
1	3.841	6,635	10.828
2	5.991	9.210	13.816
3	7.815	11.345	16,266
4	9.488	13.277	18.467
5	11.070	15.086	20,515
6	12,592	16,812	22,458
7	14.067	18.475	24,322
8	15.507	20.090	26,124
9	16.919	21,666	27.877
10	18.307	23.209	29.588

Significance level

Calculated (X^2) 13.99 > tabulated (X^2) 3.841so reject Ho

There is real association between using c.c.p & develop of jaundice in infants

X² : Practical

Q: A sample of 150 carriers of a certain antigen and a sample of 500 non\ carriers the following blood group distributions .

Blood group	Carriers	Non Carriers	Total
0	72 a	230 b	302
Α	54 c	192 d	246
В	16 e	63 f	79
AB	8 g	15 h	23
Total	150	500	650

Can one conclude from these data that the two populations from which the samples were drawn differ with respect to blood group distribution? $\alpha = 0.05$

<u>Steps of test</u> : - Assume \times^2 distributions. - Use 2 x 2 table

- Ho: there is no association between 2 variables, HA: there is association between 2 variables
- Level of significance (alpha) =0.05
- Calculate K----df = (raw-1) × (Colum-1)

$$-(X^2) = \sum \frac{[O-E]^2}{E}$$

- Conclusion : Compare×² calculated with ×² tabulated : If ×² calculated is >×² tabulated reject the H₀ & accept H_A If ×² calculated is < ×² tabulated , accept H₀ & There is association between variables, If ×² calculated is <×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ & There is no association between variables.

The answer: dF = (column - 1) x (raw - 1) = (4 - 1) x (2 - 1) = 3

$$\sum \frac{[O-E]^2}{E}$$

Ef = total raw f x total column f / total = $79 \times 500 / 650 = 60.77$

Eg = total raw g x total column g / total = 23x150/650= 5.31

Eh = total raw h x total column h / total = 23x500/650=17.69 $\sum \frac{[O-E]^2}{E}$ a = $(72 - 69.69)^2 / 69.69= 0.076$ b = $(230 - 232.31)^2 / 232.31=0.023$ c = $(54 - 56.77)^2 / 56.77 = 0.14$ d = $(192 - 189.23)^2 / 189.23= 0.041$ e = $(16 - 18.23)^2 / 18.23= 0.27$ f = $(63 - 60.77)^2 / 60.77= 0.08$ g = $(8 - 5.31)^2 / 5.31= 1.36$ h = $(15 - 17.69)^2 / 17.69=0.41$ X²= 2.4 Tabulated X² = 7.815 So calculated X² (2.4) <Tabulated X² (7.815) So accept Ho that there is no association between antigen &blood groups

Q: A sample of 500 college students participated in a study designed to evaluate the level college students, knowledge of a certain group of common disease. The following table shows the students classify by major field of study and level of knowledge of the group of diseases:

Knowledge of Diseases						
Major	Good	Poor	Total			
Premedical	31 a	91 b	122			
Other	19 c	359 d	378			
Total	50	450	500			

The answer steps:

<u>Steps of test</u> : - Assume \times^2 distributions. - Use 2 x 2 table

- Ho: there is no association between 2 variables, HA: there is association between 2 variables
- Level of significance (alpha) =0.05
- Calculate K----df = $(raw-1) \times (Colum-1)$

 $-(X^2) = \sum \frac{[O-E]^2}{E}$

- Conclusion : Compare×² calculated with ×² tabulated : If ×² calculated is >×² tabulated reject the H₀ & accept H_A If ×² calculated is < ×² tabulated , accept H₀ & There is association between variables, If ×² calculated is <×² tabulated , accept H₀ If ×² calculated is < ×² tabulated , accept H₀ & There is no association between variables.

The answer:

DF = (column - 1) x (raw - 1) = (2 - 1) x (2 - 1) = 1

$$X^{2} = \sum_{E} \frac{[O-E]^{2}}{E}$$

Ea = total raw a x total column a / total = $122 \times 50 / 500 = 12.2$

Eb = total raw b x total column b / total= 122 x 450 / 500 = 109.8Ec = total raw c x total column c / total= 378 x 50 / 500 = 37.8

 $\mathbf{X}^2 = \sum \frac{[O-E]^2}{E}$

 $a = (31-12.2)^2 / 12.2 = 28.97$ $b = (91-109.8)^2 / 109.8 = 3.22$ $c = (19 - 37.8)^2 / 37.8 = 9.35$ $d = (359-340.2)^2 / 340.2 = 1.04$

 $X^2 = 42.58$

Tabulated $X^2 = 3.841$ So calculated X^2 (42/58) >Tabulated $X^2 = (3.841)$ So accept HA that there is association between 2 groups

DF			PROBABLITY (P Value)			
	0.50	0.10	0.05	0.01	.001	
1	0.455	2.706	3.841	6.63	10.83	
2	1.386	4.605	5.991	9.21	13.82	
3	2.366	6.251	7.815	11.34	16.27	
4	3.357	7.779	9.448	13.28	18.47	
5	4.351	9.236	11.070	15.09	20.51	

(X²) CHI-SQUARE Distribution Table