

Stresses in a Soil Mass

Topics

- Normal and Shear Stresses on a Plane
- Stress distribution in soils
- Stress Caused by a Point Load
- Vertical Stress Caused by a Line Load
- Vertical Stress Caused by a Strip Load
- Vertical Stress below the Center of a uniformly Loaded Circular Area
- Vertical Stress at any Point below a uniformly Loaded Circular Area
- Vertical Stress Caused by a Rectangular Loaded Area
- Approximate method

• Normal and Shear Stresses on a Plane

From geometry for the free body diagram EBF $EB = EF \cos \theta$ $FB = EF \sin \theta$ Summing forces in N and T direction, we have $\sigma_n(EF) = \sigma_x(EF)\sin^2\theta + \sigma_y(EF)\cos^2\theta + 2\tau_{xy}(EF)\sin\theta\cos\theta$ $\frac{\sigma_{y} + \sigma_{x}}{2} + \frac{\sigma_{y} - \sigma_{x}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$ $\sigma_n = -$ Again $\tau_n(EF) = -\sigma_x(EF)\sin\theta\cos\theta + \sigma_v(EF)\sin\theta\cos\theta - \tau_{xv}(\overline{EF})\cos^2\theta + \tau_{xv}(\overline{EF})\sin^2\theta$ $=\frac{\sigma_{y}-\sigma_{x}}{2}\sin 2\theta-\tau_{xy}\cos 2\theta$

If
$$\tau_n = 0$$
 then

$$\tan 2\theta = \frac{2\tau_{xy}}{\sigma_y - \sigma_x} \qquad (3)$$

This eq. gives 2 values of θ that are 90° apart, this means that there are 2 planes that are right angles to each other on which shear stress = 0, such planes are called *principle planes* and the normal stress that act on the principle planes are to as *principle stresses*.

To find the principle stress substitute eq.3 into eq.1, we get

$$\sigma_{n} = \sigma_{1} = \frac{\sigma_{y} + \sigma_{x}}{2} + \sqrt{\left[\frac{\sigma_{y} - \sigma_{x}}{2}\right]^{2} + \tau^{2}_{xy}} \qquad \text{major principle stress}$$

$$\sigma_{n} = \sigma_{3} = \frac{\sigma_{y} + \sigma_{x}}{2} - \sqrt{\left[\frac{\sigma_{y} - \sigma_{x}}{2}\right]^{2} + \tau^{2}_{xy}} \qquad \text{min or principle stress}$$

These stresses on any plane can be found using *Mohr's circle*

• Mohr's circle

Mohr's Circle Sign Conventions:

•Compressive normal stresses are positive

 Shear stresses are positive, if when they act on two opposing faces, they tend to produce a counterclockwise rotation.

Refer to the element shown in Fig. above

Pole Method

Asst. Prof. Khalid R. Mahmood (PhD.)

Geostatic stresses

The vertical geostatic stress at point X will be computed as following

The horizontal geostatic stress can be computed as following $\sigma_h = K \sigma_v$

where K is the coefficient of lateral stress or lateral stress ratio

$$K = \frac{\sigma_h}{\sigma_v} \qquad 1 < K \le 1$$

• Geostatic stress are principle stresses (σ_1 , σ_2 and σ_3 major, intermediate and minor principle stresses) and hence the horizontal and vertical planes through any point are principle planes.

K < 1 $\sigma_v = \sigma_1$ $\sigma_h = \sigma_3$ $\sigma_2 = \sigma_3 = \sigma_h$ K = 1 $\sigma_v = \sigma_h = \sigma_1 = \sigma_2 = \sigma_3$ IsotropicK > 1 $\sigma_h = \sigma_1$ $\sigma_v = \sigma_3$ $\sigma_2 = \sigma_1 = \sigma_h$

Asst. Prof. Khalid R. Mahmood (PhD.)

The largest shear stress will found on plane lying at 45° to the horizontal

$$K < 1 \qquad \tau_{\max} = \frac{\sigma_{\nu}}{2}(1-K)$$
$$K = 1 \qquad \tau_{\max} = 0$$
$$K > 1 \qquad \tau_{\max} = \frac{\sigma_{\nu}}{2}(K-1)$$

• Stress Caused by a Point Load Boussinesq's Equation $\Delta \sigma_{z} = (3P/2\pi) (Z^{3}/L^{5})$ GROUND ►X $r = (x^2 + y^2)^{1/2}$ Using Influence Factor Tablebelow $\Delta \sigma_z = (P/Z^2) I_p$ $L = (x^{2} + y^{2} + z^{2})^{1/2} = (r^{2} + z^{2})^{1/2}$ <u>Z</u> General $\Delta \sigma = \sigma_v$ $\Delta \sigma_z \neq \sigma_1$ Principal σ_2 σ_h σ_3

r/z	<i>I</i> 1	r/z	<i>I</i> 1
0	0.4775	0.9	0.1083
0.1	0.4657	1.0	0.0844
0.2	0.4329	1.5	0.0251
0.3	0.3849	1.75	0.0144
0.4	0.3295	2.0	0.0085
0.5	0.2733	2.5	0.0034
0.6	0.2214	3.0	0.0015
0.7	0.1762	4.0	0.0004
0.8	0.1386	5.0	0.00014

• Vertical Stress Caused by a Line Load

	Variation of I _L									
x /z	$\frac{\Delta\sigma}{q/z}$	<u>x/z</u>	$\frac{\Delta\sigma}{q/z}$							
0	0.637	0.7	0.287							
0.1	0.624	0.8	0.237							
0.2	0.589	0.9	0.194							
0.3	0.536	1.0	0.159							
0.4	0.473	1.5	0.060							
0.5	0.407	2.0	0.025							
0.6	0.344	3.0	0.006							

• Vertical Stress Caused by a Strip Load

		the second se			
			2x/B		
2z/B	0	0.5	1.0	1.5	2.0
0	1.000	1.000	0.500		_
0.5	0.959	0.903	0.497	0.089	0.019
1.0	0.818	0.735	0.480	0.249	0.078
1.5	0.668	0.607	0.448	0.270	0.146
2.0	0.550	0.510	0.409	0.288	0.185
2.5	0.462	0.437	0.370	0.285	0.205
3.0	0.396	0.379	0.334	0.273	0.211
3.5	0.345	0.334	0.302	0.258	0.216
4.0	0.306	0.298	0.275	0.242	0.205
4.5	0.274	0.268	0.251	0.226	0.197
5.0	0.248	0.244	0.231	0.212	0.188

Variation of $\Delta \sigma/q$ with 2z/B and 2x/B

• Vertical Stress below the Center of a uniformly Loaded Circular Area

Variation of I_c

z/R	$\Delta \sigma / q$	z/R	$\Delta \sigma / q$
0	1	1.0	0.6465
0.02	0.9999	1.5	0.4240
0.05	0.9998	2.0	0.2845
0.10	0.9990	2.5	0.1996
0.2	0.9925	3.0	0.1436
0.4	0.9488	4.0	0.0869
0.5	0.9106	5.0	0.0571
0.8	0.7562		

• Vertical Stress at any Point below a uniformly Loaded Circular Area

fable 10.7	Variation of	A' with	z/R	and r/R	
------------	--------------	---------	-----	---------	--

									r/R
z/R	0	0.2	0.4	0.6	0.8	1	1.2	1.5	2
0	1.0	1.0	1.0	1.0	1.0	0.5	0	0	0
0.1	0.90050	0.89748	0.88679	0.86126	0.78797	0.43015	0.09645	0.02787	0.00856
0.2	0.80388	0.79824	0.77884	0.73483	0.63014	0.38269	0.15433	0.05251	0.01680
0.3	0.71265	0.70518	0.68316	0.62690	0.52081	0.34375	0.17964	0.07199	0.02440
0.4	0.62861	0.62015	0.59241	0.53767	0.44329	0.31048	0.18709	0.08593	0.03118
0.5	0.55279	0.54403	0.51622	0.46448	0.38390	0.28156	0.18556	0.09499	0.03701
0.6	0.48550	0.47691	0.45078	0.40427	0.33676	0.25588	0.17952	0.10010	
0.7	0.42654	0.41874	0.39491	0.35428	0.29833	0.21727	0.17124	0.10228	0.04558
0.8	0.37531	0.36832	0.34729	0.31243	0.26581	0.21297	0.16206	0.10236	
0.9	0.33104	0.32492	0.30669	0.27707	0.23832	0.19488	0.15253	0.10094	
1	0.29289	0.28763	0.27005	0.24697	0.21468	0.17868	0.14329	0.09849	0.05185
1.2	0.23178	0.22795	0.21662	0.19890	0.17626	0.15101	0.12570	0.09192	0.05260
1.5	0.16795	0.16552	0.15877	0.14804	0.13436	0.11892	0.10296	0.08048	0.05116
2	0.10557	0.10453	0.10140	0.09647	0.09011	0.08269	0.07471	0.06275	0.04496
2.5	0.07152	0.07098	0.06947	0.06698	0.06373	0.05974	0.05555	0.04880	0.03787
3	0.05132	0.05101	0.05022	0.04886	0.04707	0.04487	0.04241	0.03839	0.03150
4	0.02986	0.02976	0.02907	0.02802	0.02832	0.02749	0.02651	0.02490	0.02193
5	0.01942	0.01938				0.01835			0.01573
6	0.01361					0.01307			0.01168
7	0.01005					0.00976			0.00894
8	0.00772					0.00755			0.00703
9	0.00612					0.00600			0.00566
10								0.00477	0.00465

Table 10.7	able 10.7 (continued)											
3	4	5	6	7	8	10	12	14				
0 0.00211	0 0.00084	0 0.00042	0	0	0	0	0	0				
0.00419 0.00622	0.00167 0.00250	0.00083	0.00048	0.00030	0.00020							
0.01013	0.00407	0.00209	0.00118	0.00071	0.00053	0.00025	0.00014	0.00009				
0.01742	0.00761	0.00393	0.00226	0.00143	0.00097	0.00050	0.00029	0.00018				
0.01935	0.00871	0.00459	0.00269	0.00171	0.00115	0.00070	0.00010	0 00007				
0.02142	0.01013	0.00548	0.00325	0.00210	0.00141	0.00073	0.00043	0.00027				
0.02221	0.01160	0.00659	0.00399	0.00264	0.00180	0.00094	0.00056	0.00036				
0.02145	0.01221	0.00732	0.00405	0.00306	0.00214	0.00113	0.00008	0.00045				
0.01502	0.01220	0.00768	0.00536	0.00384	0.00242	0.00132	0.00079	0.00051				
0.01240	0.00040	0.00708	0.00527	0.00304	0.00202	0.00100	0.00113	0.00005				
0.00983	0.00795	0.00628	0.00492	0.00384	0.00290	0.00188	0.00124	0.00084				
0.00784	0.00661	0.00548	0.00445	0.00360	0.00291	0.00193	0.00130	0.00091				
0.00635	0.00554	0.00472	0.00398	0.00332	0.00276	0.00189	0.00134	0.00094				
0.00520	0.00466	0.00409	0.00353	0.00301	0.00256	0.00184	0.00133	0.00096				
0.00438	0.00397	0.00352	0.00326	0.00273	0.00241							

Table 10.8 Variation of B' with z/R and r/R^*

									r/R
z/R	0	0.2	0.4	0.6	0.8	1	1.2	1.5	2
0	0	0	0	0	0	0	0	0	0
0.1	0.09852	0.10140	0.11138	0.13424	0.18796	0.05388	-0.07899	-0.02672	-0.00845
0.2	0.18857	0.19306	0.20772	0.23524	0.25983	0.08513	-0.07759	-0.04448	-0.01593
0.3	0.26362	0.26787	0.28018	0.29483	0.27257	0.10757	-0.04316	-0.04999	-0.02166
0.4	0.32016	0.32259	0.32748	0.32273	0.26925	0.12404	-0.00766	-0.04535	-0.02522
0.5	0.35777	0.35752	0.35323	0.33106	0.26236	0.13591	0.02165	-0.03455	-0.02651
0.6	0.37831	0.37531	0.36308	0.32822	0.25411	0.14440	0.04457	-0.02101	
0.7	0.38487	0.37962	0.36072	0.31929	0.24638	0.14986	0.06209	-0.00702	-0.02329
0.8	0.38091	0.37408	0.35133	0.30699	0.23779	0.15292	0.07530	0.00614	
0.9	0.36962	0.36275	0.33734	0.29299	0.22891	0.15404	0.08507	0.01795	
1	0.35355	0.34553	0.32075	0.27819	0.21978	0.15355	0.09210	0.02814	-0.01005
1.2	0.31485	0.30730	0.28481	0.24836	0.20113	0.14915	0.10002	0.04378	0.00023
1.5	0.25602	0.25025	0.23338	0.20694	0.17368	0.13732	0.10193	0.05745	0.01385
2	0.17889	0.18144	0.16644	0.15198	0.13375	0.11331	0.09254	0.06371	0.02836
2.5	0.12807	0.12633	0.12126	0.11327	0.10298	0.09130	0.07869	0.06022	0.03429
3	0.09487	0.09394	0.09099	0.08635	0.08033	0.07325	0.06551	0.05354	0.03511
4	0.05707	0.05666	0.05562	0.05383	0.05145	0.04773	0.04532	0.03995	0.03066
5	0.03772	0.03760				0.03384			0.02474
6	0.02666					0.02468			0.01968
7	0.01980					0.01868			0.01577
8	0.01526					0.01459			0.01279
9	0.01212					0.01170			0.01054
10								0.00924	0.00879

Table 10.8 (ca	ontinued)
----------------	-----------

3	4	5	6	7	8	10	12	14
0 -0.00210 -0.00412 -0.00599	0 -0.00084 -0.00166 -0.00245	0 -0.00042 -0.00083	0 -0.00024	0 -0.00015	0 -0.00010	0	0	0
-0.00991	-0.00388	-0.00199	-0.00116	-0.00073	-0.00049	-0.00025	-0.00014	-0.00009

-0.01115	-0.00608	-0.00344	-0.00210	-0.00135	-0.00092	-0.00048	-0.00028	-0.00018
-0.00995	-0.00632	-0.00378	-0.00236	-0.00156	-0.00107			
-0.00669	-0.00600	-0.00401	-0.00265	-0.00181	-0.00126	-0.00068	-0.00040	-0.00026
0.00028	-0.00410	-0.00371	-0.00278	-0.00202	-0.00148	-0.00084	-0.00050	-0.00033
0.00661	-0.00130	-0.00271	-0.00250	-0.00201	-0.00156	-0.00094	-0.00059	-0.00039
0.01112	0.00157	-0.00134	-0.00192	-0.00179	-0.00151	-0.00099	-0.00065	-0.00046
0.01515	0.00595	0.00155	-0.00029	-0.00094	-0.00109	-0.00094	-0.00068	-0.00050
0.01522	0.00810	0.00371	0.00132	0.00013	-0.00043	-0.00070	-0.00061	-0.00049
0.01380	0.00867	0.00496	0.00254	0.00110	0.00028	-0.00037	-0.00047	-0.00045
0.01204	0.00842	0.00547	0.00332	0.00185	0.00093	-0.00002	-0.00029	-0.00037
0.01034	0.00779	0.00554	0.00372	0.00236	0.00141	0.00035	-0.00008	-0.00025
0.00888	0.00705	0.00533	0.00386	0.00265	0.00178	0.00066	0.00012	-0.00012
0.00764	0.00631	0.00501	0.00382	0.00281	0.00199			

• Vertical Stress Caused by a Rectangularly Loaded Area

from tables or one can use the charts below

• Calculation of Stress below an interior point of the loaded area $\Delta \sigma_z = q[I_1 + I_2 + I_3 + I_3 + I_4]$

Calculation of Stress below a point outside of the loaded area

Examples (1-3)

Given:

Stresses on an element as shown in Fig.

Plot the Mohr circle to some convenient sci center of circle = $\frac{\sigma_1 + \sigma_3}{2} = \frac{52 + 12}{2} = 32$ kPa radius of circle = $\frac{\sigma_1 - \sigma_3}{2} = \frac{52 - 12}{2} = 20$ kPa

Given:

The same element and stresses as in Fig. Ex. 1 , except that the is rotated 20° from the horizontal, as shown in Fig.

Required:

As in Example 10.1, find the normal stress σ_{α} and the shear stress plane inclined at $\alpha = 35^{\circ}$ from the base of the element.

Given:

The stress shown on the element in Fig.

Required:

.

- **a.** Evaluate σ_{α} and τ_{α} when $\alpha = 30^{\circ}$.
- **b.** Evaluate σ_1 and σ_3 when $\alpha = 30^\circ$.

<u>Example 4</u>

The plan of a uniformly loaded rectangular area is shown in Figure 6.23a. Determine the vertical stress increase, $\Delta \sigma$, below point A' at a depth z = 4 m.

Solution

The stress increase, $\Delta \sigma$ can be written as

 $\Delta \sigma = \Delta \sigma_1 - \Delta \sigma_2$

where $\Delta \sigma_1$ = stress increase due to the loaded area shown in Figure 6.23b $\Delta \sigma_2$ = stress increase due to the loaded area shown in Figure 6.23c

For the loaded area shown in Figure 6.23b:

$$m' = \frac{B}{z} = \frac{2}{4} = 0.5$$
$$n' = \frac{L}{z} = \frac{4}{4} = 1$$

From Figure 6.21 for m' = 0.5 and n' = 1, the value of $I_5 = 0.1225$. So $\Delta \sigma_1 = qI_5 = (150)(0.1225) = 18.38 \text{ kN/m}^2$ Similarly, for the loaded area shown in Figure 6.23c:

$$m' = \frac{B}{z} = \frac{1}{4} = 0.25$$
$$n' = \frac{L}{z} = \frac{2}{4} = 0.5$$

Thus, $I_5 = 0.0473$., Hence

$$\Delta \sigma_2 = (150)(0.0473) = 7.1 \text{ kN/m}^2$$

So

$$\Delta \sigma = \Delta \sigma_1 - \Delta \sigma_2 = 18.38 - 7.1 = 11.28 \text{ kN/m}^2$$

=