

 هياكل البيانات

 نيةالمرحلة الثا

 (7محاضرة)

 م.م فرح معاذ جاسم

Farahmaath86@uoanbar.edu.iq

2

 Pointer &Structure Lecture seven

1. POINTER

Pointer is a variable in C++ that holds the address of another variable.

They have data type just like variables, for example an integer type pointer

can hold the address of an integer variable and an character type pointer can

hold the address of char variable.

Syntax of pointer

data_type *pointer_name;

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

To assign the address of variable to pointer we use ampersand symbol (&).

int *ptr,val;

val=5;

ptr=&val;

 cout<<"Address of val: "<<&val<<endl;
 cout<<"Address of val: "<<ptr<<endl;
 cout<<"Address of ptr: "<<&ptr<<endl;
 cout<<"Value of val: "<<*ptr;

https://beginnersbook.com/2017/08/cpp-data-types/

3

 Pointer &Structure Lecture seven

2. STRUCTURE

 Structure is a group of data elements grouped together under one

name. These data elements, known as members, can have different types and

different lengths. Data structures can be declared in C++ using the following

syntax:

struct type_name

{

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

.

}object_names;

Where type_name is a name for the structure type, object_name can be

a set of valid identifiers for objects that have the type of this structure. Within

braces {}, there is a list with the data members, each one is specified with a

type and a valid identifier as its name.

For example:

struct product

{

 int weight;

 double price;

} ;

product apple;

product banana, melon;

or

struct product {

 int weight;

 double price;

} apple, banana, melon;

4

 Pointer &Structure Lecture seven

Once the three objects of a determined structure type are declared (apple, banana,

and melon) its members can be accessed directly. The syntax for that is simply to insert a

dot (.) between the object name and the member name. For example, we could operate

with any of these elements as if they were standard variables of their respective types:

1

2

3

4

5

6

apple.weight

apple.price

banana.weight

banana.price

melon.weight

melon.price

main()

{

 banana.price=0.04;

 banana.weight=1;

 cout<<banana.price;

}

Ex2:

struct Person

{

 char name[50];

 int age;

 float salary;

};

 main()

{

 Person p1;

 cout << "Enter Full name: ";

 cin.get(p1.name, 50);

 cout << "Enter age: ";

 cin >> p1.age;

 cout << "Enter salary: ";

 cin >> p1.salary;

 cout << "\nDisplaying Information." << endl;

 cout << "Name: " << p1.name << endl;

 cout <<"Age: " << p1.age << endl;

 cout << "Salary: " << p1.salary;

}

5

 Pointer &Structure Lecture seven

3.POINTERS TO STRUCTURE

It's possible to create a pointer that points to a structure. It is similar to

how pointers pointing to native data types like int, float, double, etc. are

created. Note that a pointer in C++ will store a memory location.

#include <iostream>

using namespace std;

struct Length

{

 int meters;

 float centimeters;

};

main()

{

 Length *ptr, l;

 ptr = &l;

 cout << "Enter meters: ";

 cin >> (*ptr).meters;

 cout << "Enter centimeters: ";

 cin >> (*ptr).centimeters;

 cout << "Length = " << (*ptr).meters << " meters " <<

(*ptr).centimeters << " centimeters";

}

4.STRUCT AS FUNCTION ARGUMENT

You can pass a struct to a function as an argument. This is done in the

same way as passing a normal argument. The struct variables can also be

passed to a function. A good example is when you need to display the values

of struct members. Let's demonstrates this:

struct Person

{

 int citizenship;

 int age;

};

6

 Pointer &Structure Lecture seven

void func(struct Person p)

{

 cout << " Person citizenship: " << p.citizenship<<endl;

 cout << " Person age: " << p.age;

}

main()

{

 struct Person p;

 p.citizenship = 1;

 p.age = 27;

 func(p);

}

