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Example: A cylindrical tank of radius R and height H initially filled with water. 

At the bottom of the tank there is a hole of radius r , through which water drains 

under the influence of gravity. Find the depth of water at any time t , and 

determine how long it takes the tank to drain completely? 

 

Solution: dyRdV .. 2  
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To find the required time for the tank to drain completely ( ot ), we substitute       

y = 0, 
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Example: A spherical (half ball) tank of radius R initially filled with water. At 

the bottom of the tank there is a hole of radius r, through which water drains 

under the influence of gravity. Find the depth of water at any time t, and 

determine how long it takes the tank to drain completely? 

 

Solution: dyxdV 2  water loose 

dtrygdV 2.2   water outlet 
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Example: It is a fact of common experience that when a rope is wound around a 

rough cylinder, a small force at an end can resist a much larger force at the 

other. It is found that throughout the portion of the rope that is in contact with 

cylinder the change in tension per unit length is proportional. 

The constant of proportionality is the coefficient of friction between the rope 

and the cylinder divided by radius of the cylinder. 

Assuming a coefficient of friction of 0.35, how many times must a rope be 

snubbed around a cylinder of 1 foot diameter for a man holding one end to be 

able to resist a force 200 times greater than he exert? 

 

Solution:  
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Example: According to Fourier's
(1768-1830)

 law of heat conduction. The amount 

of heat in Btu per unit time flowing through an area is proportional to the area 

and to the temperature gradient, in degrees per unit length, in the direction of the 

perpendicular to the area. On the basis of this law, obtain a formula for the 

steady-state heat loss per unit time from a unit length of pipe of radius ro 

carrying steam at temperature To if the pipe is covered with insulation of 

thickness w, the outer surface of which remain at the constant temperature T1. 

What is the temperature distribution through the insulation, i.e., what is the 

temperature in the insulation as a function of radius? 
 

Solution:  Since the problem tells us that steady-state conditions have been reached, it 

follows that the heat loss per unit time from a unit length of the pipe is a constant independent 

of time, say Q. furthermore, it is reasonable to suppose that heat conduction through the 

insulation in the direction of the length of the pipe is negligible in comparison with the heat 

flow in the radial direction; and this we shall assume to be the case. We shall also make the 

obvious assumption that the heat flow through the insulation has circular symmetry, i.e., we 

shall assume that the temperature in the insulation depends only on the radial distance r. Let 

as now consider a typical cross section of the pipe and insulation, as suggested in the figure 

below. Clearly under the assumption that all heat flow through the insulation is radial, it 

follows that for the unit length  of pipe we are considering, all the heat that passes into the 

insulation through its inner surface will eventually pass into the air through its outer surface. 

Moreover, on the way, this same amount of heat Q will also pass through every coaxial 

cylindrical area between ro and r1= ro+w. Now if we let T denote the temperature in the 

insulation at the radius r, it follows that dT/dr is the temperature gradient, or temperature 

change per unit length, in the direction perpendicular to the cylindrical area of radius r. 

Hence, by Fourier's  law, we have for the (as yet unknown) amount of heat Q  flowing 

through this general area per unit time. 

 

Q= thermal conductivity × area × temperature gradient 
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We thus have the exceedingly simple separable equation 
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To determine the integration constant c, we use the fact that T=To when r=ro ; 

hence 
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Since k is the (presumably) known thermal conductivity of the insulation, this 

formula gives the heat loss per unit time, as required. 

 

To find the temperature distribution, we merely substitute  for Q/2 k , getting 
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Example: A weight W (kN), is to be supported by a column having a shape of 

solid of revolution. If the material of column weights ρ (kN/m
3
) and if the radius 

of the upper  base of the column is to be r0 (m) determine how the radius of the 

column should vary if at all cross sections the stress is to be the same? 

 

Solution:  
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Example: a body falls in a medium with resistance proportional to speed at any 

instant. If the limiting speed is 50 ft/sec and the speed of the body decrease to 

half (25 ft/sec) after (1 sec), what was the initial velocity? 

 

Solution:  

 

Force = mass × acceleration 

dt

dv
mF  ,    Newton's second law 
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Example: The tank in the Fig. below, contains 200 gal of water in which 40 lb 

of salt are dissolved, five gallon of brine each containing 2 lb of dissolved salt, 

run into the tank per minute, and the mixture kept uniform by stirring, runs out 

at the same rate. Find the amount of salt y(t) in the tank at any time? 

 

Solution: 

 

The rate of change 
dt

dy
y '  

 

Where y(t) is the amount of salt. 

 

 

Salt inflow rate = 
min

10
min

1
.25

lb

gal

lb
gal   

 

Salt Outflow rate = (the tank is always 200 gal because 5 gal flow in and 5 gal 

flow out every per minute), thus, 1 gal contain y(t)/200. Hence 5 out flowing gal 

contain 5× y(t)/200 = 0.025 y(t). 

 

y' = Salt inflow rate – salt outflow rate 

 

y' = 10 – 0.025 y        Variable separable, 
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Example: the tank in the fig. below contain 1000 gal 0f water in which 200 lb 

of salt are dissolved, fifty gallon, of brine each containing tcos1  lb of dissolved 

salt run into the tank per minute, the mixture kept uniform by stirring, run out at 

the same rate. Find the amount of salt y(t) in the tank at any time? 

 

Solution: 

 

 

Salt inflow rate      = 50 (1+ cos t) 

  

Salt outflow rate = (the tank always contain 1000 gal, thus, 1 gal contain 

y(t)/1000, hence 50 y(t)/1000 = 0.05 y(t) is the salt 

content in outflow per minute. 

 

The rate of change 
dt

dy
y '   of y equal the balance: 

 

y' = Inflow – Outflow = 50 (1+cos t) -  0.05 y 
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We first solve the following integration: 
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now we have to integrate another partial integration: 
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Structural Applications: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Y = 0 

Y' ≠ 0 

M ≠ 0 

V ≠ 0 

Y = 0 
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M = 0 

V ≠ 0 
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EI y    = Deflection 

EI y'   = Rotation 

EI y''   = Moment 

EI y'''  =Shear 
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