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Chapter 2 Ordinary Differential Equations

Example: A cylindrical tank of radius R and height H initially filled with water.
At the bottom of the tank there is a hole of radius r , through which water drains
under the influence of gravity. Find the depth of water at any time t , and
determine how long it takes the tank to drain completely?

Solution: dV = —T1.R?.dy
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v(velocity) =,/2gh =,/2gy g
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- - t+c
g R?

2y r’ i .
+ _:_F'HC initial conditions, y=H at t=0
g

/ZH [2H
—=0+Cc = c=_|—
g 9

To find the required time for the tank to drain completely (t,), we substitute
y=0,
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Example: A spherical (half ball) tank of radius R initially filled with water. At
the bottom of the tank there is a hole of radius r, through which water drains
under the influence of gravity. Find the depth of water at any time t, and
determine how long it takes the tank to drain completely?

Solution: dv =-TTx*dy water loose

dv =./2gy.TIr*dt water outlet

J2gy. TIr?dt = -T1x* dy
J2gy. ridt=—x*dy
J2gy. r2dt=(y*-2Ry)dy

2
J2g. rede =Y Z2RYY
VY

I,/Zg. rzdtzj(y%—ZRy%)dy
29 . rz.tzgy%—ZRy%xéﬂz

2 / gRy/ 29. ri.t+c
initial condition:at t=0 y=R

2/ _ARR% —04c

3
F—AR/—
15
2 / 4Ry/ 29.r? t+igR/
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Chapter 2 Ordinary Differential Equations

Example: It is a fact of common experience that when a rope is wound around a
rough cylinder, a small force at an end can resist a much larger force at the
other. It is found that throughout the portion of the rope that is in contact with
cylinder the change in tension per unit length is proportional.
The constant of proportionality is the coefficient of friction between the rope
and the cylinder divided by radius of the cylinder.
Assuming a coefficient of friction of 0.35, how many times must a rope be
snubbed around a cylinder of 1 foot diameter for a man holding one end to be
able to resist a force 200 times greater than he exert?

T
Solution:

dL r
dB/ [P —

200

To

dL=rdo — 4 _035;
rdo r

dT_T=o.35d9 — InT =0.3560+¢

at =0 = T=T,
INT,=0+c = c=InT,
INT =0.350+InT,

InT
InT
T 1 200T, 1

0=In—x = Hd=In X
T 0.35 T, 0.35

(o]

~In200
0.35

03560 =InT -InT, =

0

0 =15.13Rad

No.of revolution = w = 2.4Revolution

I1Rad
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Chapter 2 Ordinary Differential Equations

Example: According to Fourier's®"®8% Jaw of heat conduction. The amount
of heat in Btu per unit time flowing through an area is proportional to the area
and to the temperature gradient, in degrees per unit length, in the direction of the
perpendicular to the area. On the basis of this law, obtain a formula for the
steady-state heat loss per unit time from a unit length of pipe of radius r,
carrying steam at temperature T, if the pipe is covered with insulation of
thickness w, the outer surface of which remain at the constant temperature Tj.
What is the temperature distribution through the insulation, i.e., what is the
temperature in the insulation as a function of radius?

Solution: Since the problem tells us that steady-state conditions have been reached, it
follows that the heat loss per unit time from a unit length of the pipe is a constant independent
of time, say Q. furthermore, it is reasonable to suppose that heat conduction through the
insulation in the direction of the length of the pipe is negligible in comparison with the heat
flow in the radial direction; and this we shall assume to be the case. We shall also make the
obvious assumption that the heat flow through the insulation has circular symmetry, i.e., we
shall assume that the temperature in the insulation depends only on the radial distance r. Let
as now consider a typical cross section of the pipe and insulation, as suggested in the figure
below. Clearly under the assumption that all heat flow through the insulation is radial, it
follows that for the unit length of pipe we are considering, all the heat that passes into the
insulation through its inner surface will eventually pass into the air through its outer surface.
Moreover, on the way, this same amount of heat Q will also pass through every coaxial
cylindrical area between r, and ri= ro+w. Now if we let T denote the temperature in the
insulation at the radius r, it follows that dT/dr is the temperature gradient, or temperature
change per unit length, in the direction perpendicular to the cylindrical area of radius r.
Hence, by Fourier's law, we have for the (as yet unknown) amount of heat Q flowing
through this general area per unit time.

Q= thermal conductivity x area x temperature gradient
Q =k (1x2II r)d—T
dr

We thus have the exceedingly simple separable equation

__Q dr
211k r
Hence,
T:&Inr+c
211k
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To determine the integration constant ¢, we use the fact that T=T, when r=ro ;
hence

To:i.lnr0+c or c:To—i.lnro
21Tk 21Tk
T=T,+ Q (Inr—Inr,)
21Tk

furthermore T =T, when r=r,+w=r,. Hence,

Q

T =T. +——.(Inr,=Inr
1 0 ZHk( 1 o)

from which we find easily that

(T,-T,).2I1k
Q:—
Inr,—Inr,

Since k is the (presumably) known thermal conductivity of the insulation, this
formula gives the heat loss per unit time, as required.

To find the temperature distribution, we merely substitute for Q/211k , getting

Inr—Inr,

T=T,+(-T,).
Inr, —Inr,
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Example: A weight W (kN), is to be supported by a column having a shape of
solid of revolution. If the material of column weights p (kN/m?) and if the radius
of the upper base of the column is to be ro (m) determine how the radius of the
column should vary if at all cross sections the stress is to be the same?

Solution:
(4]
A
/ dz
0+
< o >
r+dr
®4 > fy=0

cA+w-cA, =0
ollr? +pl‘[(r+%)2dz—crl‘l(r+dr)2 =0

2

or? +p(r2 +rdr+d%j.dz—o(r2 +2rdr+dr?)=0

2
Approximately d% and dr?=0
p(rP+rdr)dz-2crdr=0
pridz-2crdr=0
pridz=2c rdr

Idz:jzarzdr =z2=ZInr? +c

pr P
at z=0 r=r,

o o
0==Inr’+c = c=-—=Inr’
p p

o o
z==Inr’—=Inr’

P P
2
z:gln(L] 2% nl
P o P I
'O_Z:|nL
20 r
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Chapter 2
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pr_ pz _ pzir’ - W _ W

20 , W 2W A zr?
Ir}
pzl'[ro2

r=re

Example: a body falls in a medium with resistance proportional to speed at any
instant. If the limiting speed is 50 ft/sec and the speed of the body decrease to
half (25 ft/sec) after (1 sec), what was the initial velocity?

Solution:

Force = mass x acceleration

F= m% ,  Newton's second law

X at Ly

= l=e™ = |=en
I.y:II.Q.dt - |.v=j|.Q.dt

k k
—.t —.t
enm .v:‘[em .g.dt+c
K, k k

m —t . —.t
enm .v=g.?.ern +C and dividing by e™

.m c
v=9m, >
k it

em
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Initial conditions :

att=0 = v=50 ft/sec

s0=20, ° o =2, 0 o 20

att=1 — v=25 ft/sec

5= 3, * 5= 30, _°
koo gm0
° 50 °©
9
c=-25xe>°

Example: The tank in the Fig. below, contains 200 gal of water in which 40 Ib
of salt are dissolved, five gallon of brine each containing 2 Ib of dissolved salt,
run into the tank per minute, and the mixture kept uniform by stirring, runs out
at the same rate. Find the amount of salt y(t) in the tank at any time?

Solution:

The rate of change y'= 3—3:

Where y(t) is the amount of salt.

Out let

Salt inflow rate = 5galx2 Ib . 1 =10 "_)
gal min min

Salt Outflow rate = (the tank is always 200 gal because 5 gal flow in and 5 gal
flow out every per minute), thus, 1 gal contain y(t)/200. Hence 5 out flowing gal
contain 5x y(t)/200 = 0.025 y(t).

y' = Salt inflow rate — salt outflow rate

y'=10-0.025y Variable separable,
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ﬂ =10-0.025y = ﬂ =-0.025y +10
dt dt

Y _ya0 = Y o250t
—0.025 dt y —400

In|y — 400 = -0.025t +c
y—400 =c e %%
att=0 y=40Ib = y(0)=40
40-400=cx1 = c¢=-360
y(t) =-360 e %" +400 the amount of salt at any time t.

Example: the tank in the fig. below contain 1000 gal Of water in which 200 Ib
of salt are dissolved, fifty gallon, of brine each containing 1+cost Ib of dissolved
salt run into the tank per minute, the mixture kept uniform by stirring, run out at
the same rate. Find the amount of salt y(t) in the tank at any time?

Solution:

Saltinflow rate =50 (1+ cos t)

Salt outflow rate = (the tank always contain 1000 gal, thus, 1 gal contain
y(t)/1000, hence 50 y(t)/1000 = 0.05 y(t) is the salt
content in outflow per minute.

The rate of change y'= 3—3: of y equal the balance:

y' = Inflow — Outflow = 50 (1+cos t) - 0.05y

y'+0.05y =50(1+cost) = linear differential equation
P =0.05 Q =50(1+cost)

| = glPdt _ g/005dt _ 5005t

I.y:II.Q. dt+c
e%%ty = (J.e°'°5t. 50 (1+ cost) dt +c)
y =g 20! [{[50 e®%" dt +50 Ieo'os‘. cost dt}+ c]

50
— e—0.0St
y {0.05

Out let

et 150 Ie°'°5t. cost dt + c}
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We first solve the following integration:

Ie°'°5t. cost. dt

Letu=e%®" = du=0.05e%%" dt
Letdv=costdt = v=sint

_[eo'OS‘. cost. dt = e®®'. sint — O.OSIeO'OS‘. sint. dt

now we have to integrate another partial integration:

Ie°'°5t. sint. dt
Let u=e"" = du=0.05e%"" dt
Let dv=sint = v=-cost

je°'°5‘. cost. dt = e®' sint —0.05 [-e*®'.cost + 0.05Je°'°5t.cost. dt
je°'°5‘. cost. dt = e”®' sint +0.05 e***'.cost — 0.0025 Ie°'°5t .cost dt
(1-0.0025) Ie°‘°5‘. cost. dt = e®%" sint +0.05 e®*'.cost

Ie°'°5‘. cost. dt =0.9975 e*** .sint +0.0498 e***'.cost

y(t) =™ [1000 e®%! 1+ 49.88 e°% sint + 2.494 e®*' cost + c]
y(t) =1000 + 49.88 sint + 2.494 cost + ¢ e ***

Initial conditions

at t=0 = y=200

y(0) =1000+ 0+ 2.494 (1) + ¢ = 200

c =-802.494

- y(t) = y(t) =1000 + 49.88 sint + 2.494 cost —802.494 e *%*
the amount of salt at any time t
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Structural Applications:

;
VYVVVVVVVVVVVVY I VYVVVVVVVVVYVVY
Y=0 Y=0 Y=0 Y=0
Y'#£0 Y'#0 Y'#0 Y=
M#0 M=0 M=0 M#0
V#0 V#0 V#0 V#0
P
VYVVVVVVVYVVYVY rvllIIIi Ely = Deflection
L Ely' =Rotation
#
) Ely" =Moment
Y#0 y=o El'y'"" =Shear
Mo N Ely" = Load
M =0 M #0 y =
V=0 V#0
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