Example1: Solve the following linear program using the simplex method.
Maximize $z=5 x_{1}+4 x_{2}$
subject to

$$
\begin{array}{cc}
6 x_{1}+4 x_{2} & \leq 24 \\
x_{1}+2 x_{2} & \leq 6 \\
-x_{1}+x_{2} & \leq 1 \\
x_{2} & \leq 2 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

The inequality of each constraint should convert to equality; thus, the canonical form of the model is converted to standard form as follows:

Maximize $z=5 x_{1}+4 x_{2}+0 s_{1}+0 s_{2}+0 s_{3}+0 s_{4}$
subject to

$$
\begin{gathered}
6 x_{1}+4 x_{2}+s_{1}=24 \\
x_{1}+2 x_{2}+s_{2}=6 \\
-x_{1}+x_{2}+s_{3}=1 \\
x_{2}+s_{4}=2 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, s_{4} \geq 0
\end{gathered}
$$

The variables s_{1}, s_{2}, s_{3}, and s_{4} are the slacks associated with the respective constraints. Next, we write the objective equation as

$$
z-5 x_{1}-4 x_{2}=0
$$

In this manner, the starting simplex tableau can be represented as follows:

Basic	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{x}_{\boldsymbol{2}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{s}_{\boldsymbol{2}}$	$\boldsymbol{s}_{\boldsymbol{3}}$	$\boldsymbol{s}_{\boldsymbol{4}}$	solution
z	-5	-4	0	0	0	0	0
s_{1}	6	4	1	0	0	0	24
s_{2}	1	2	0	1	0	0	6
s_{3}	-1	1	0	0	1	0	1
s_{4}	0	1	0	0	0	1	2

The result can be seen by setting the non-basic variables (x_{1}, x_{2}) equal to zero in all the equations, and also by noting the special identity-matrix arrangement of the constraint coefficients of the basic variables (all diagonal elements are 1, and all off-diagonal elements are 0).

In the simplex tableau where the objective function is written as $z-5 x_{1}-4 x_{2}=0$, the selected variable is the non-basic variable with the most negative coefficient in the objective equation. In the terminology of the simplex algorithm, x_{1} is known as the entering variable because it enters the basic solution.

If x_{1} is the entering variable, one of the current basic variables must leave; that is, it becomes non-basic at zero level (recall that the number of non-basic variable must always be $n-m$).

The mechanics for determining the leaving variable calls for computing the ratios of the right-hand side of the equations (Solution column) to the corresponding (strictly) positive constraint coefficients under the entering variable, x_{1}, as the following table shows.

Basic	x_{1}	solution	
s_{1}	6	24	$x_{1}=24 / 6=4$
s_{2}	1	6	$x_{1}=6 / 1=6$
s_{3}	-1	1	$x_{1}=1 /-1=-1$ (non-negative denominator, ignore)
s_{4}	0	2	$x_{1}=2 / 0=\infty$ (zero denominator, ignore)

x_{1} enters (at level 4) and s_{1} leaves (at level zero).

The new solution is determined by "swapping" the entering variable x_{1} and the leaving variable s_{1} in the simplex tableau to yield non-basic variables which are s_{1}, x_{2}.
Basic variables are $x_{1}, s_{2}, s_{3}, s_{4}$

The swapping process is based on the Gauss-Jordan row operations. It identifies the entering variable column as the pivot column and the leaving variable row as the pivot row with their intersection being the pivot element. The following tableau is a restatement of the starting tableau with its pivot row and column highlighted.

Enter							
Basic	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	solution
z	-5	-4	0	0	0	0	0
s_{1} Leave	6	4	1	0	0	0	24 Pivot row
s_{2}	1	2	0	1	0	0	6
S_{3}	-1	1	0	0	1	0	1
S_{4}	0	1	0	0	0	1	2

Pivot column

The Gauss-Jordan computations needed to produce the new basic solution include two types.

1. Pivot row
a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row $=$ Current pivot row \div Pivot element.
2. All other rows, including z

New row $=($ Current row $)-($ Pivot column coefficient $) \times($ New pivot row $)$
These computations are applied to the preceding tableau in the following manner:

1. Replace s_{1} in the Basic column with x_{1} :

New x_{1}-row $=$ Current s_{1}-row $\div 6$
$=1 / 6\left(\begin{array}{lllllll}6 & 4 & 1 & 0 & 0 & 0 & 24\end{array}\right)=\left(\begin{array}{llllll}1 & 2 / 3 & 1 / 6 & 0 & 0 & 0\end{array}\right)$
2. New z-row $=$ Current z-row $-(-5) \times \operatorname{New} x_{1}$-row
$=\left(\begin{array}{lllllll}-5 & -4 & 0 & 0 & 0 & 0 & 0\end{array}\right)-(-5) \times\left(\begin{array}{lllllll}1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 4\end{array}\right)=\left(\begin{array}{lllllll}0 & -2 / 3 & 5 / 6 & 0 & 0 & 0 & 20\end{array}\right)$

```
3. New }\mp@subsup{s}{2}{}\mathrm{ -row = Current s2-row - (1) }\times\mathrm{ New }\mp@subsup{x}{1}{}\mathrm{ -row
=(112[0lllll
4. New s3}\mp@subsup{s}{3}{}\mathrm{ -row = Current s3-row - (-1) × New }\mp@subsup{x}{1}{}\mathrm{ -row
```



```
5. New s4-row = Current s4-row - (0) \times New }\mp@subsup{x}{1}{}\mathrm{ -row
=([\begin{array}{llllll}{0}&{1}&{0}&{0}&{0}&{1}\end{array})-(0)\times(\begin{array}{lllllll}{1}&{2/3}&{1/6}&{0}&{0}&{0}&{4}\end{array})=(\begin{array}{lllllll}{0}&{1}&{0}&{0}&{0}&{1}&{2}\end{array})
```

The new basic solution is ($x_{1}, s_{2}, s_{3}, s_{4}$), and the new tableau becomes

Enter
Pivot column

Basic	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\boldsymbol{3}}$	$\boldsymbol{s}_{\boldsymbol{4}}$	solution
z	0	$-2 / 3$	$5 / 6$	0	0	0	20
x_{1}	1	$2 / 3$	$1 / 6$	0	0	0	4
\boldsymbol{s}_{2} Leave	0	$4 / 3$	$-1 / 6$	1	0	0	2 Pivot row
\boldsymbol{s}_{3}	0	$5 / 3$	$1 / 6$	0	1	0	5
\boldsymbol{s}_{4}	0	1	0	0	0	1	2

As a result, when we set the new non-basic variables x_{2} and s_{1} to zero, the Solution-column automatically yields the new basic solution ($x_{1}=4, s_{2}=2, s_{3}=5, s_{4}=2$) This "conditioning" of the tableau is the result of the application of the Gauss-Jordan row operations. The corresponding new objective value is $z=20$.

In the last tableau, the optimality condition shows that x_{2} (with the most negative z-row coefficient) is the entering variable. The feasibility condition produces the following information:

Basic	x_{2}	solution	
x_{1}	$2 / 3$	4	$x_{2}=4 \div 2 / 3=6$
s_{2}	$4 / 3$	2	$x_{2}=2 \div 4 / 3=1.5$ minimum
s_{3}	$5 / 3$	5	$x_{2}=5 \div 5 / 3=3$
s_{4}	1	2	$x_{2}=2 \div 1=2$

Thus, s_{2} leaves the basic solution, and the new value of x_{2} is 1.5 . The corresponding increase in z is $2 / 3 x_{2}=2 / 3 \times 1.5=1$, which yields new $z=20+1=21$, as the tableau below confirms. Replacing s_{2} in the Basic column with entering x_{2}, the following Gauss-Jordan row operations are applied:

1. New pivot x_{2}-row $=$ Current s_{2}-row $\div 4 / 3$
2. New z-row $=$ Current z-row $-(-2 / 3) \times$ New x_{2}-row
3. New x_{1}-row $=$ Current x_{1}-row $-(2 / 3) \times$ New x_{2}-row
4. New s_{3}-row $=$ Current s_{3}-row $-(5 / 3) \times$ New x_{2}-row
5. New s_{4}-row $=$ Current s_{4}-row $-(1) \times$ New x_{2}-row

The operations above produce the following tableau:

Basic	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{x}_{\boldsymbol{2}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{s}_{\boldsymbol{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{4}}$	solution
z	0	0	$3 / 4$	$1 / 2$	0	0	21
x_{1}	1	0	$1 / 4$	$-1 / 2$	0	0	3
x_{2}	0	1	$-1 / 8$	$3 / 4$	0	0	$3 / 2$
s_{3}	0	0	$3 / 8$	$-5 / 4$	1	0	$5 / 2$
s_{4}	0	0	$1 / 8$	$-3 / 4$	0	1	$1 / 2$

Based on the optimality condition, none of the z-row coefficients are negative. Hence, the last tableau is optimal.

The optimal values of the variables in the Basic column are given in the right-hand-side Solution column and can be interpreted as

Decision variables	Optimum value	Recommendations
x_{1}	3	Produce 3 tons of product 1
x_{2}	$3 / 2$	Produce 1.5 tons of product 2
z	21	Maximum profit

The solution also gives the status of the resources. A resource is designated as scarce if its associated slack variable is zero; that is, the activities (variables) of the model have used the resource completely. Otherwise, if the slack is positive, then the resource is abundant. The following table classifies the constraints of the model:

Resource	Slack value	Status
Constraint 1	$s_{1=}=0$	Scarce
Constraint 2	$s_{2=}$	Scarce
Constraint 3	$s_{3=5 / 2}$	Abundant
Constraint 4	$s_{4=1 / 2}$	Abundant

