Chapter 2 Ordinary Differential Equations

Example: solve the following D.E? y"-3y+2y =¢
Solution: y=y, +y,

to find y,

Let y"-3y+2y=0 = homogeneous

m>-3m+2=0 = (M-1)(M-2)=0 = m=1 m,=2

y, =C.e* +Ce™

to find y,

y, =Ce* ®butthereisatermintheeq. of y, whichis alsoCe” so we multiplyy, by x
y, =Cxe*

y',=C xe*+Ce* =C(e* +xe")

y",=C xe* +Ce* +Ce* =C(2¢e" + xe”)

substitutein the originalequation

C(2+x)e*—3C(L+x)e*+2Cxe* =¢”
2Ce*+Cxe*—3Ce*-3Cxe*+2Cxe*=¢"
—-Ce'=¢" = C=-1

X X

y,=—xe* =y=Ce"+C,e* —xe

(1.2.2.2) Method of Variation of Parameters:

In general if f(x) is not one of the types of functions considered in the
(undetermined coefficients method), or if the differential equation does not have
constant coefficient, then this method is preferred.

Variation of parameters is another method for finding a particular solution of the
n™-order linear differential equation. It can be applied to all linear D.E's. It is
therefore more powerful than the undetermined coefficients which is restricted
to linear D.E's with constant coefficients and particular forms of f(x).

The general form f the linear D.E is

+a, F o +a, y=1f(x) or L(y)="f(x)
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Chapter 2 Ordinary Differential Equations

The solution as we know is y=y, +y, where y;, is the general solution of the
corresponding homogeneous equation L(y)=0 which is expressed as:

Ve =C Y, (X)+C, YV, ()4 +C Y, (X)) e (D

and y, is the particular solution we need to obtain which can be expressed as:
Yo =Vi Y +Vo Yo etV Y,
Where y, =y.(x) (i=12,...... ,n) is given in eg. (1) and,

v, (i=12,...... ,n) 1s un unknown functions of x that still must be determined.

VY VLY, e +Vv',y,=0
ViYLV, YL +V, Yy, =
i (n-2) 1 (n-2) f (n-2)
VY ALY, T +V'9 Y, =0
' (n-1) | (n-1) ' (n-1)
iy VLY, 4 +Vv',y, =Tf(x)

Then integrate each v'; to obtain v; , disregarding all constants of integration.
This is permissible because we are seeking only one particular solution.

Example: for the special case n=3,
Viy 4V, Y, +Vsy; =0

VYV Y+ Y =0

Vll y”1+VI2 y”2+V'3 y”3 = f(X)

for the special case n=2,

VI1 Y1 +VI2 Y, = 0

VYV, Y, = f(x)
for the special case n=1,

vy = ()
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Chapter 2 Ordinary Differential Equations

Example: solve y"+y'=secx.

Solution:

This is a 3™ order equation with

Yp =C, +C,COSX+C3SINX = Yy, =V, +V, COS X +V,Sin X
Here y;=1,y,=cos x, yz3=sinx, and f(x) =sec X =

V' (1) +Vv', (cosx)+V'5 (sinx) =0
V', (0) +V', (—sinx) + V', (cos) =0
V', (0) +V', (—cos X) + V', (—sin x) = secx

Solving this set of equations simultaneously, we obtain :

V,=secx V,=-1 V', ,=-tanx. Thus,

v, = _|.v'1 dx = Isecx dx = In|sec x + tan x|
v, :Iv'zdx :j—ldx=—x

sin x
vy = [Vydx = [~ tanx dx = -[=—=dx = In[cos ¥
C0S X

Substituting these values into y, =
y, = Injsecx +tan X — xcos x + (sin x) In [cos
The general solution is therefore:

y: yh +yp
=C, +C, COS X+ C; Sin X + In |sec X + tan x| — x€os X + (sin x) In|cos X|
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Chapter 2 Ordinary Differential Equations

(1.2.2.3) the Euler-Cauchy Differential Equations:

So far, this section of the first chapter has been devoted to a study of linear
differential equations with constant coefficients. However, there is one type of
linear equation with variable coefficients which it is appropriate to discuss at
this point because by a simple change of independent variable it can always be
transformed into a linear equation with constant coefficients. This is the so-
called Euler-Cauchy™"®%*#" equation.

a x"y®™ +a x"ty"Y 4 +a,  xy+a, y=f(x)

in which the coefficient of each derivative is a constant multiple of the
corresponding power of the independent variable. As we shall soon see, the
change of the independent variable defined by

X =¢e? or z=Inx| X#0

will always convert this equation into a linear equation with constant
coefficients.

Example: solve the D.E x®y"+2x* y"+xy+y =0
Solution: x=¢’ z=Inlx g

dy dy dz 1dy
dx  dz dx  xdz
d’y d(dy) d(1ldy
d x? _&(&]_&(;Ej
1dy 1d?ydz
X2 dz xdzdx
_lay 1dYy
x> dz x*dz?

dy d[dzyj d[ 1dy 1d?%

dx° dxldx®) dx

_2dy 1dydz_ 2d’y 1d’yd
x*dz x>dz®dx x*dz® x®dz®dx
2dy_1dy 2d% 1d%
x*dz x*dz® x*dz® x*dz®
2dy 3d’ 1d%




Chapter 2 Ordinary Differential Equations

Xy 22X Y X Y'+y =0
2 3
Xs(Z dy 3 d% iu}z)@(_%dy

FE_?FJFXWZS X EJF
2 3 2
oW 30y Ay LWy L0y by g
dz dz® dz dz dz° dz
d’y d’y dy
ey 8y % v_0
dz® dz* dz y

m-m?>-m+1=0

(m-)(m*-1)=0
m =1 m,,=+1

y(z) =ce’ +c,ze’ +ce”

z=Inx X=e’

Leonhard Euler

y(x) =clx+c2xlnx+&
X (1707 — 1783)

Applications of Linear Differential Equations with constant coefficients:

Free Oscillation:

Static Case:
4
2. fy=0 oy
mg—ks, =0 ., f I t
5, =— 5o 5, - _
. TR~ S S SR S| T
Dynamic Case: v l .\
d?y .
F=m 2 Unloaded Loaded spring Spring stretched Spring compressed
dt spring in equilibrium during vibration during vibration
mg—-k(s,+y)=my" @) () ) )
butmg=ks, =
-ky=my" =
k(So +Y)
my'+ky=0

mg
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Ordinary Differential Equations

2 2
dy+ky0 dcy

t2

) k
w'=— or w= |—
m m
m?+w’ =0
m? = —w?
m=Fwl

y = Acos ot + Bsin wt

Case | (General case):

y@=y, < y(0)=0
A=y, B=0 =

y =Y, cos wt

for a complete cycle
2r

ot=2r = t=—
w

~T :2—7r cycle period
w

+w* y =0 where

+ downward

Yo

cosine wave/\
T 21
I ' >t

I (l) :I

ol
4

cosg=cos(p+27) = coswt=cos(wt+27x)

Complete Cycle
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Chapter 2 Ordinary Differential Equations

Case II:

y(0)=0 < y'(0)=v -
0=A+0 = A=0 sine wave v

dy 1)
E:a)Bcosa)t | | | | v__|

d 0=0[ " T

& =wB=v !
dtl,_,

Case IlI:

y(0) =y, y(©)=v Ymax
Y, =A+0 = A=y,

Y _ o Asinot + oBcosot Yo

dt T 21
v=0+wB - — I I I I t

B=Y
w

v .
y =Y, Cos wt +—sin wt

w t=0

Tacoma Narrows bridge oscilla - ‘ w
winds of a mild gale on July 18940. After a couple of hqurs the bridge collapsed
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Example: A weight of (7 N) is suspended from a spring of modulus (k=36/35
N/cm). At t = 0, while the weight in static equilibrium it is given suddenly an

initial velocity of (48 cm/sec) in downward.

. Find the vertical displacement as a function of t.
b. What are the period and frequency of motion?

c. Through what amplitude does the weight moves.
d.

a

At what time does the load reach its extreme displacement above and

below its equilibrium position?

Solution:

A.

a):\/E: ‘/% =12
m 980

y = Acos 12t + Bsin 12t
y(0)=A+0 = A=0
y = Bsin 12t

y'=12 Bcos 12t

yl_ =12B = 48=12B = B=4

y=4sin12t

y=4sin12t -1<sin12t<1

Yiex = 4 Yrin = —4
Amplitude =4 +|-4/=8

D.

sinl12t=71

12t:(2n+1)%

(1+2nj
t= T
24

Heirrich Rudolf Hertz
(1857 — 1894)

n=0,1 2, Multiplication of %
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Chapter 2 Ordinary Differential Equations

Example: the slender homogeneous rod BC shown below weighs (36 N) and the
small (20 N) body E is welded to the rod. The spring has a modulus of
(12.25 N/cm). When it is in equilibrium the rod is displaced an angle of (8)
clockwise and released from rest. Determine the natural frequency and the
maximum velocity of vibration?

Solution:

Equilibrium phase

> M =0
T,x15=20%x10+36x7.5
T, =31.33N

Vibration phase (Motion)

T=T,+kx15sin@
T =31.33+12.25x15sin8
T =31.33+183.755sin8

D Mg =1lyx6"

oo 1
where 1, =moment of inertia = =M L?

T=TetKY,
=T,+k15sin0

2
0" =second derivative of the angle 3—3

[36(7.5c0s 0) + 20(10cos §) — (31.33 +183.75sin #)15 cos O] x tm__
100 cm
2
12 a5y + D aoy? o x
3 98 9.8 10000 cm

sind~60 cosf~1
270+200-470-27560=4.8 0"
480" +27560=0

0" +5746=0

m’+574=0 = m,,=F574i

6 = Acos+/574t+ Bsin+/574t

T= 27 cycle period < f _Vord _ frequancy
V574 2
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Chapter 2 Ordinary Differential Equations

at t=0 = O=8x—_—
180

87 _Ax110 = A=SE
180 180

at t=0 = 6°=0
0=0+B(cosv574x0) = B=0

87
0 =——cosv574t+0
180

6 =0.14cos~/5741 0.14
0° = -0.14sin /574t x /574 rad
0" =-3.36 sinV574t B
0w =336 734 ‘
sec
Hint
I, =1,+Md? X
I, = too small (negligible)
L % L B ]
_ 2_p 1 X
I = [ Adxpx —Ap{ } -
0 0
L3
I, =Ap—
° 3 dl, = Adxp x*
L2
l.=ALp —
B = ALp 3
L2
I, =M —
° 3
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Chapter 2 Ordinary Differential Equations

Damped Oscilation:

Damping oc%=cy' K(sa+) I
Wy

el> fy=My"

w—k(s, +y)—cy'=My" cy’ T

Ky+M y"+cy'=0

My"+cy+ky =0 | Arithmetic Model

Mm’+cm+k=0  Characteristic Equation

_—CFJcP-4Mk -c -1 \/m

M2 = 2M “2M  2M

Critical Damping Coefficient:

The Critical Damping Coefficient is the value of ¢ which makes:

Jc2—4Mk =0

C, =2JkM

4—3"’#

-l

Dashpot

Tacoma Narrows-bridge i§@a
second harmoni¢.standing
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Chapter 2 Ordinary Differential Equations

Casel: c~C, ie c*-4Mk>=0 = OverDamping < « and p arereal

_ —(a-p)t —(a+p)t
y(©) =c e @M c,e

t>w

M—) 0

t

»
»

Case 2: c=C, ie m=m,=—a = Ciritical Damping

y(t)=(c,+c, t)e™ y 1
to

y(t)—>0

v

Case 3: c<C, < Under Damping

mlzz_—ciL c?—4MKk y
T 2M 2M

N
t)—>0
a=— ﬂzth&—4Mk Yo
Vo

1 .
=—_JAMk —¢® xi m
2M g AR AANRNY SN
. 2 6 8 1 2 14
m,=—-a+aol

y(t) =eP' (Acosqt + Bsinqt)
y=e*"(Acosw t+Bsinw't)
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Chapter 2 Ordinary Differential Equations

Example: A (1.84 N) body is suspended by a spring which is stretched
(15.3 cm) when it is loaded. If the body is drawn down (10 cm) from the
position of equilibrium; find the position of the spring as a function of
time (t) if:

wn e
o 0o
W Wk
~ o1
ol

Solution:

1) forc=15

0.188y"+1.5y'+12y =0
y'+8y'+64y =0
m’+8m+64=0

m, - -87 W
y(t) =e *'(Acos4,/3 t + Bsin4,/3 1)
Initial Conditions :

Dashpot | =]

=—4F4J3i < Under Damping

at t=0 = y'=0 =y=0.1m
y(0)=A+0=01 = A=01

y'(t) = [— 4./3 Asin4[3t+4.3 Bcos4\/§t]+[Acos4\/§t+ Bsin 4\/§t](—4e““)

1
"0)=4./3B-4A=4,/3B-4x0.1=0 =»> B=——
y'(0)=4,3 J3 NG

1 .
=e*(0.1cos4,/3 t + sin4,/3t
y=e"*Y( J3 TNE J31)

2) forc =3.75

3)forc=3
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Chapter 2 Ordinary Differential Equations

Column Buckling:

ny:O = F,=0

M=-Fy
d’y _ M
dx? EI

yi=—doy = yly=0
E | El

2 2

FI'I‘-n

_F
El

=L y=0 also
but this means that B =0 which results in zero equation. However,
If the load F have just the right value to make:

/5 L=n then the last equation will be satisfied without B being 0 and

the equilibrium is possible in adeflected position defined by :

F_nz N=123 ... — y=Bsin X
El L
F F i
n:n_ﬂ' — n:M — Fn= n7Z' E|
El L El L L

7 E|l

For values of F below the lowest critical load, the column will remain in its
undeflected vertical position, or if displaced slightly from it, will return to it as
an equilibrium configuration. For values of F above the lowest critical load and
different from the higher critical loads, the column can theoretically remain in a
vertical position, but the equilibrium is unstable, and if the column is deflected
slightly, it will not return to a vertical position but will continue to deflect until it
collapses. Thus, only the lowest critical load is of much practical significance.
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