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Chapter 3 Simultaneous Linear D.E's

If two or more dependant variables are function of a single independent variable,
the equation involving their derivatives is called simultaneous D.E.

X+y=5 . .
simulteneous equations
2x—-y =10
% +4y =t
t simulteneous differenti al equations
dy +2x=¢'
dt

Newton's second law module:
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dt
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k4 X3 k3 (X3 - X2) kz (Xz - X1) X2 +
Ks
Note: The force of gravity (weight) can be neglected
provided we also neglect the initial elongation of the m3
springs and assume that each is unstretched when the c
system is in equilibrium. X
Ka
d?x
kz (Xz _Xl)_kl X =m dtzl
d?x,
ks (X3 - Xz) _kz (Xz - Xl) =m, .2
dt
d?x
_k4 X3 _ks(xa _Xz):mswz3
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Chapter 3 Simultaneous Linear D.E's

Methods of solution:

1- Elimination of dependant variables by differentiation.
2- Elimination of dependant variables using operator equation.
3- Solution by Cramer rule.

First Method: Elimination of dependant variables by differentiation

Example:

dx ,dy ¢
3 Y =0 1
a Car Y @

dy

it X=Y (2)

from eq.(2)

dy
= N s 3
X=2r Y 3

ox_dy &y

dt dt® dt
substitute in eq.(1)

2
d zl—d—er3ﬂ+y=et
dt® dt dt

d’y _dy ‘
+2—+y=e
dt? dt y

y=ce ' +c,te” +%et
from eq.(3)

x=ﬂ—y:1 cle‘t+czte“+let —~ cle‘t+c2te‘t+let
dt dt 4 4
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Second Method: Elimination of dependant variables using operator equation

Example:

4 Y xmy W
Gz T PXTY s
d?y _dx

——F+3—H2Y =X i 2
ar a7 (@)

D°Xx+Dy+x-y=0

(D*+)x+(D-1)y=0 ..cooevvnn..... ()
D’y +3Dx+2y-x=0
(D°+2)y+(BD-Dx=0 ........... (4)
To Eliminate y

eq.(3)x(D? +2)-eq.(4)x(D-1) =

(D?+2)(D*+D)x+(D*+2)(D-1)y=0
~-(D-1)(BD-D)x-(D*+2)(D-1)y=0

(D*+2)(D* +1)x-(D-1)(3D-1)x=0
(D* +3D? +2)x—(3D* -4D +1)x =0
(D*+4D+1)x=0 where x = f(t)
solve for x

and using the same approach solve for y
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Third Method: Solution by Cramer rule

Determinant:

For 2" order matrix:

A_|:all a12:|
dy; 8y

detA=a;,a,,—a,,a,

=3y, 8y, —a;,38y

For 3" order matrix:

A general third-order determinant can be expanded using the former equations:

aZl a23
a'31 a33

a21 a'22

+4d;;
83 83

12

=a, [azz Qg3 — Ay asz]_ a;, [az1 Qg3 — Ay, 3-31]+ a;; [a21 Az, — Ay, a31]

=ay; dy, a33 +a, a23 a31 + a13 a, a32 - a13 a,, a31 —a, a23 a32 —a;,a,, a33

The expansion can also be obtained by diagonal multiplication, by repeating on
the right the first two columns of the determinate and then adding the signed
products of the elements on the various diagonals in the resulting array:
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(0o
! 8y, 83 . o CY
a,, a,, dy, a,, a,,
ds, a;, dy, dy a3,
SRS
Cramer Rule:

Second Order:

ax+by=d
a,X+b,y=d,

|

b

a

|Ds|:a1 bl : |DX|_d1 bl ‘D‘:ai dl

a, b, d, b, I la, d,

|DX| ‘DY‘
X = y=

D D
Third Order:
ax+by+cz=d, a b c|x d,
px+hy+c,z=d,| = |a, b, ¢ |ly|=|d,| < a;; X =0
aX+by+cz=d, a, b, ¢ ||z d,

a b c d b ¢ a d ¢ a b d
|Ds|: 2 B Cf |Dx|:d2 b, ¢, ‘Dy‘:az d, ¢ |Dz|:a2 b, d,

a3 b3 C3 d3 b3 CS a3 d3 CS a3 b3 d3
Y Y A Y

D D D
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Example:

dx ,dy ¢
—+3—=+y=e
TR

Dx+3Dy+ Yy =¢'
Dy-x-y=0

Dx+ (3D +1)y=¢'

-x+(D-1)y=0
D 3D+
1 D-1

D-1

IDs|=D?-D+3D+1=D*+2D +1
DX =(D-1)e'-0=e'-€'=0

IDy|=0+e'=¢'

. L e
y:cle‘+czte‘+z

oX

X=— = (Ds)x=Dx = (D*+2D+1)x=0

s
X =

t

= (Ds)y=Dy = (D*+2D+1y=¢

73




Chapter 3

Simultaneous Linear D.E's

Example:

dx )
2 _3x-6y=t
dt y

ij+g§—3y:et
dt dt

(D-3)x-6y=t’
Dx+(D-3)y =¢

D-3 -6
D D-3
t> -6
e’ D-3
D-3 t?
D ¢

[Ds|=
DX = = (D-3)t* +6e' =2t —3t* +6e’

IDy| = =(D-3)e' —Dt* =—2e' -2t

_ Dy
[Ds

(D* +9)y = —2e' -2t

m® =-9

m,, = +3i

Yy, = (Acos3t + Bsin 3t)

1 2

=—Ze' -2t
Yo =75 T

y = |Ds|y =|Dy|

y = Acos3t + Bsin3t—%et —%t

and
_ [P
D]
(D? +9)x = 2t —3t* + 6¢"

m?+9=0 = m,=F3i

= |Ds|x =|Dx

y, = Acos3t + Bsin3t

find y,
Y=YntY,
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Chapter 3 Simultaneous Linear D.E's

Application Example: Assuming the friction to be neglected, find the position
of masses m; , m, of the system shown below w.r.t. time. And find the

frequency and position if the motion is to right?
If k = constant, m; = m, and at t=0, X; = -X, (to left).

X2
N —>
. k
kxi, +—— my —> Kk(xX) m JV\MAA,_ g
o m— T 7 //,
K(XX1)) 4—— m, F Xo

Dotk =k(x, = %) kX =k(x, —2x,)

d’x,
tz

=K (Xy = 2X,)  ereeeen e @

Z fX2 :—k(X2 _Xl)

(D*+20°) X, —»° X, =0

Ommiting x
~o° X, +(D* +®°)x, =0 9%

(D® +*)(D* +2w*) X, —0’ (D* + w*) X, =0

~o' X +o’ (D’ +o°)X, =0

(D*+3w* D’ +20") X, —0* x, =0

(D*+30° D* +0*)x, =0
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m* +3w°’m’ +w*=0
2
m? = (-37 \/E)%
m’> =-0.38w> , -2.620°
m, =¥0.62wi , m,, =F1.620i
X, = A, €0s0.62wt + B, sin0.62 wt + A, c0s1.62 wt + B, Sin1.62 ot
dx,

att=0 < x =-X, and x,=0 =—=0 &,
dt dt

=0

A =-028x, A,=-072x, B,=B,=0

X, = —X,(0.28 c0s0.62 wt + 0.72 c0s1.62 wt)

T 2 - 0.62w
0.62w 2
162w
f, =
2

Example: A uniform bar 4 ft long and weighing 16 Ib/ft is supported as shown
in fig. on springs of modulus 24 and 15 Ib/in, respectively. If the springs are
guided so that only vertical displacement of the center of the bar is possible, and
if friction is neglected, find the (natural) frequencies at which the system would
begin to vibrate if disturbed slightly from its equilibrium position?

Solution: :

0000
Do
0000

(a)

Assuming @ T and counterclockwise positive moment

From the Fig. it is clear that the instantaneous deflections of the left- and the
right-hand springs are, respectively:
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y—24sin@ : y+24sing
or, if we make the usual small-angle approximation sin6=9,

y—2460 . y+2460
Hence the unbalanced forces which the springs apply to the ends of the bar are,
—~24(y—2460) : —15(y+240)

Newton's law applied to the translation of the center of gravity of the bar
therefore gives the equation,

d’y
mdtz :zfy
64 d’y
384 dt?
or
d?y
dt?

=-24(y—-2460)-15(y + 240)

+234Y=12960 =0 oovvveeeereeeereeeeeeeeeeee e )

Applying Newton's second law in tortional form to the rotation of the bar about
its center of gravity, we have (using the fact that the moment of inertia of a

uniform bar of length | about its midpoint is %mlz,

- 0" = z \Y/ -
64 (48)°
384 12
or

2
ng—ZTZy+7029=0 ............................................. (2)

0" = 24[24(y - 240) |- 24[15(y + 24 0)]

Since we are only asked to find the natural frequencies of the mechanical
configuration, there is no need to actually solve the simultaneous D.E's (1) and
(2). For the required frequencies are completely determined by the
corresponding characteristics equation:

m?+234 —1296

—m? 2 (2 2 _
27 m2+702/= M +936m* +155520 = (m* + 216)(m* + 720) =0
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The roots of the equation are +6/6i and +125i.

The components y and @ corresponding to the characteristic numbers +6+/6i are
both periodic functions which oscillate with frequency w, =66 rad/sec.
Likewise, The components corresponding to the characteristic numbers are
oscillatory function with frequency w, =125 rad/sec . thus, w; and w, are the

natural frequencies of the mechanical system. Under the assumption of small-
amplitude vibration. Converted from radians per second, they are:

:@:2.34Hz and flzﬁ
2 2r

f, =4.27 Hz

Example: Let as consider the mass-spring system shown in the Fig. below,
determine the forces which act on each of the masses as a result of the arbitrary
displacements x;, X, and xz of the respective masses?

Solution:

Taking into considration that,
f =@ If the spring is stretched.

f =— If the spring is compressed.

And taking the positive direction of x as the base for the system movement and
applying it to the forces we have:

Spring modulus ~ Change in the spring length Force
k1 X1 K1 X1
K12 X2 - X1 K1z (X2 - X1)
K13 X3 — X1 K1z (X3 - X1)
ko3 X3 — X2 Koz (X3 — X2)
Ks - X3 Kz (- X3)

fL ==k X + k(% = %) + K3 (X — %)
fz = _k12 (Xz - Xl) + k23 (Xs - Xz)
fs = k13 (Xs - X1) - kza (X3 - Xz) - ks X3

fl X - (kl + k12 + k13) k12 k13
f= fz X=1X% k= k12 - (klZ + kza) k23
fa X3 k13 k23 - (k13 + k23 + ks)

k is usually called the stiffness matrix of the system.
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