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Chapter 6

Partial differential equations

1.1 Introduction:

In our previous work, most notably

in Chap. 1, we have seen how the analysis
of mechanical or electrical systems
containing lumped parameters often leads
to ordinary differential equations in which
the time t is the (only) independent
variable. However, the assumption that
all masses exists as conceptualized mass
points; that all springs are weightless; or
that elements of an electric circuits are
concentrated in ideal resisters, capacitors,
and inductors, rather than continuously
distributed, is frequently not sufficiently
accurate. In such cases, a more realistic
approach must take into account the fact
that the dependant variable depend not
only on t but also on one or more space
variables. Because there is more than one
independent variable, the formulation of
such problems leads to partial, rather than
ordinary, differential equations. In this
chapter we shall discuss such equations as
they commonly arise in applied
mathematics. We shall begin by
examining in some detail the derivation
form physical principles of a number of
important partial differential equations.
Then, knowing the forms of most
common occurrence, we shall investigate
methods of solution and their application
to specific problems.
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Figure Although largely sell-educated in mathematics, Jean Le
Rond d’Alembert (1717-1783) gained equal fame as a mathematician
and philosophe of the continental Enlightenment. By the middle of the
eighteenth century, he stood with such leading European mathemati-
cians and mathematical physicists as Clairaut, D. Bernoulli, and Euler.
Today we best remember him for his work in fluid dynamics and ap-
plying partial differential equations to problems in physics. (Portrait
courtesy of the Archives de I'’Académie des sciences, Paris.)
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1.2 Some important linear partial differential equations
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——=a’ One-dimensional wave equation.
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+ = Two-dimensional Laplace equation.
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St = Three-dimensional Laplace equation.
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—— =T (X,Y) Two-dimensional Poisson equation.
ox° o0y

Example: Verify that the following functions are solutions of Laplace
equation (U, +U,)=0"?
1) U =2xy
2) U =sinxsinhy

Solution:

U=2xy

U, =2y U, =2x
u,=0 u,=0

U,+U, =0 < Laplace equation

U =sinxsinhy

U,=cosxsinhy = U, =-sinxsinhy

U, =sinxcoshy = U, =sinxsinhy

U, +U, =-sinxsinhy+sinxsinhy=0 = Laplace equation
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Example: Verify that the following function is a solutions of Heat
equation U, =C*U
U=e"sin3x ?

Solution:

U =e"'sin3x

U, =—e'sin3x

U ,=3e"cos3x = U, =-9e"'sin3x

ce- Y _ —e'sin3x 1 o oot
U, -9e'sin3x 9 3

XX

It is a solution of heat equation.

Example: Verify that the following function is a solution of  Wave
equation U, =a’U_
U=x>+3xt> ?

Solution:

U =x*+3xt?

U ,=6xt = U,=6x

U, =3x*+3t> = U, =6x
a2_ﬁ_Gx

U 6X

XX

It is a solution of the wave equation.
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1.3 Vibration in a stretched string

A L
; . X,t
Assumptions: y(xn 0. <,
1- Moment of Inertia (I) is sosmall. |  _______
2- No bending. x, E 5
3- Only pure tension. T :
0 x x+Ax

Tl :T(x) & Tz :T(X+Ax)

1.3.1 Finding the differential equation of the mathematical model

d?y
ny:mdtz
T sing,—T, sina, = pasY
ean SINa, =Ty SiNe, = pASW

a depends on x where  a; =a,, and @, =, .,

T(x+Ax) sin a(x+Ax) _T(x) sin a(x) _ E@
AX AX ot?
~~a and As arevery small then As=Ax and

Sin a(x+Ax) =tan a(x+Ax)

2

- Toemo AN a0 — T taN , oy
(x+AX) (x+Ax) (€)) )
Ax“—rn.o AX _AXII_rnO p ﬁ
knowing that . lim, e T _ g
nowing tha AxﬂloT G &N
P 62y 0 y (x,t)
—I(T,,tane,,, |= p — < tana,,, = :
( 0 (x)) P 5 U
0 ? :
8@[% é(x,t)j: D a_tzl < T Isconstant
X X
o’y %y
T =p—2 =
axz p t2
2 2
0 y2 = C2 a—zl P C2 =£
oX ot T
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1.3.2 Another method for deriving the wave equation:

gi F1(x) = f(x+AA)2—f(x)
f'(xX).Ax= f(x+Ax) - f(X)

f(Xx+AX) = f(x)+ f'(X).Ax

d?y o’y
f=mod = passy
2l =mya=rissa

Dot =Tiao SIN Ay — T SIN
> f,=Tsin A, no ~TsiNG|

. 0 . .
D f, = [T sinal,,, +&(I' sin a).Ax} ~Tsing]
oy

nyzi(Tsina).Ax = if gissmall = sina~tana~-—-
OX OX

31, ZQ(T %.Ax

nyzT yAx = Zf—m2¥ pAsgty =
ﬂzﬁa_v

ox* T ot?

2 2

SXB;:CZ—Z where ¢? =2

Or

0 ’ T
Y2 where a®=—
ot X Jo,
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1.3.3 General solution:
1.3.3.1 Separation of variables

We begin by presenting the most classical method of solving the wave
equation: separation of variables. Despite its current widespread use, its initial
application to the vibrating string problem was immersed in controversy involving
the application of a half-range Fourier sine series to represent the initial conditions.
On one side, Daniel Bernoulli claimed (1775) that he could represent any general
initial condition with this technique. To d’Alembert and Euler, however, the half-
range Fourier sine series, with its period of 2L, could not possibly represent any
arbitrary function. However, by 1807 Bernoulli was proven correct by the use of
separation of variables in the heat conduction problem and it rapidly grew in
acceptance. In the following examples we show how to apply this method to solve
the wave equation.

Separation of variables consists of four distinct steps. The basic idea is to
convert a second-order partial differential equation into two ordinary differential
equations. First, we assume that the solution equals the product Xy).T¢). Direct
substitution into the partial differential equation and boundary conditions yields
tow ordinary differential equations and the corresponding boundary conditions.
Step tow involves solving a boundary-value problem of the Sturm-Liouville type. In
step three we find the corresponding time dependence. Finally we construct the
complete solution as a sum of all product solutions. Upon applying the Initial
coefficients, we have an eigenfunction expansion and must compute the Fourier
coefficients. The substitution of these coefficients into the summation yields the
final solution.

y(x,t) = X(X) .T(t)
y=XT

2 2
Q%ZXdE=XT"
ot dt

2
OY 1 x
oX

And substituting in the original Wave differential equation

X.T'=a’T.X"

T 5 X"
—=a- —
T X
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Now the left-hand member of the equation is clearly independent of x. hence (in
spite of its appearance) the right-hand side of the equation must also be
independent of X, since it is identically equal to the expression on the left.
Similarly, each member of the equation must be independent of t. therefore, being
independent of both x and t, each side of the equation must be a constant, say p,
and we can write

e X

T x H

Thus the determination of solutions of the original partial differential equation has
been reduced to the determination of solutions of the two ordinary differential
equations

T"=uT and X"=§x

Casel: u>0

X" uX=0 ,let u=2
a’m’ -2 =0 characteristic equation
a’m’=2 = m, _32
’ a
L Ay

X =Ae? +Be?®
T"—uT =0
let o= A
T"-2T =0
m®— 4> =0 characteristic equation
m =2 = m,=F1
T=Ce”"+De™

Ay Ay
y(x,1) :(Aea +Be @ }.(Ce“ + De‘“)
And this solution is rejected physically because it is not periodic.
Case 2. u=0

X"=0 = X'=C = X=Ax+B
T"'=0 = T'=C = T=Ct+D
y=(Ax+B).(Ct+D)

And this solution is rejected physically also because it is not periodic.
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