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1.1  Introduction: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our previous work, most notably 

in Chap. 1, we have seen how the analysis 

of mechanical or electrical systems 

containing lumped parameters often leads 

to ordinary differential equations in which 

the time t is the (only) independent 

variable.  However, the assumption that 

all masses exists as conceptualized mass 

points; that all springs are weightless; or 

that elements of an electric circuits are 

concentrated in ideal resisters, capacitors, 

and inductors, rather than continuously 

distributed, is frequently not sufficiently 

accurate. In such cases, a more realistic 

approach must take into account the fact 

that the dependant variable depend not 

only on t but also on one or more space 

variables. Because there is more than one 

independent variable, the formulation of 

such problems leads to partial, rather than 

ordinary, differential equations. In this 

chapter we shall discuss such equations as 

they commonly arise in applied 

mathematics. We shall begin by 

examining in some detail the derivation 

form physical principles of a number of 

important partial differential equations. 

Then, knowing the forms of most 

common occurrence, we shall investigate 

methods of solution and their application 

to specific problems. 
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1.2  Some important linear partial differential equations 
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Example: Verify that the following functions are solutions of Laplace          
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Example: Verify that the following function is a solutions of Heat              

equation  xxt UCU 2   

xeU t 3sin   ? 
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It is a solution of heat equation. 

 

 

 

 

Example: Verify that the following function is a solution of  Wave              

equation  xxtt UaU 2   
23 3 txxU    ? 

 

Solution: 

1
6

6

633

66

3

2

22

23









x

x

U

U
a

xUtxU

xUtxU

txxU

xx

tt

xxx

ttt

 

It is a solution of the wave equation. 
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1.3  Vibration in a stretched string 

 

Assumptions: 
     

1- Moment of Inertia (I) is so small. 

2- No bending. 

3- Only pure tension. 

 

 

 

 

 

 

1.3.1 Finding the differential equation of the mathematical model 
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1.3.2 Another method for deriving the wave equation: 
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1.3.3 General solution: 

 

1.3.3.1 Separation of variables 

 

We begin by presenting the most classical method of solving the wave 

equation: separation of variables. Despite its current widespread use, its initial 

application to the vibrating string problem was immersed in controversy involving 

the application of a half-range Fourier sine series to represent the initial conditions. 

On one side, Daniel Bernoulli claimed (1775) that he could represent any general 

initial condition with this technique. To d’Alembert and Euler, however, the half-

range Fourier sine series, with its period of 2L, could not possibly represent any 

arbitrary function. However, by 1807 Bernoulli was proven correct by the use of 

separation of variables in the heat conduction problem and it rapidly grew in 

acceptance. In the following examples we show how to apply this method to solve 

the wave equation.  

Separation of variables consists of four distinct steps. The basic idea is to 

convert a second-order partial differential equation into two ordinary differential 

equations. First, we assume that the solution equals the product X(x).T(t). Direct 

substitution into the partial differential equation and boundary conditions yields 

tow ordinary differential equations and the corresponding boundary conditions. 

Step tow involves solving a boundary-value problem of the Sturm-Liouville type. In 

step three we find the corresponding time dependence. Finally we construct the 

complete solution as a sum of all product solutions. Upon applying the Initial 

coefficients, we have an eigenfunction expansion and must compute the Fourier 

coefficients. The substitution of these coefficients into the summation yields the 

final solution. 
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And substituting in the original Wave differential equation 
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Now the left-hand member of the equation is clearly independent of x. hence (in 

spite of its appearance) the right-hand side of the equation must also be 

independent of x, since it is identically equal to the expression on the left. 

Similarly, each member of the equation must be independent of t. therefore, being 

independent of both x and t, each side of the equation must be a constant, say µ, 

and we can write 
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Thus the determination of solutions of the original partial differential equation has 

been reduced to the determination of solutions of the two ordinary differential 

equations 
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And this solution is rejected physically because it is not periodic. 

 

Case 2:  0  
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And this solution is rejected physically also because it is not periodic. 


