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Applying boundary and initial conditions to the general formula of the wave 

equation: 
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And by taking Fourier half-range Sin expansion: 
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1.3.3.2 The d’Alembert Solution of the Wave Equation 

 

If f is a function possessing a second derivative, then, by the chain rule, 
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And from these results it is evident that  )( atxfy    satisfies the Wave equation 
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It is an equally simple matter to prove that if g is an arbitrary twice-differentiable 

function, then  )( atxg   is likewise a solution of (1). Hence, since it is a linear 

equation, it follows that the sum 
 

)2.........(..........)()( atxgatxfy   
 

is also a solution of (1). In fact, it can be shown that if f and g are arbitrary twice-

differentiable functions, then Eq. (2) is a complete solution of the wave equation. 

This form of the solution of the wave equation is especially useful in revealing the 

significance of the parameter a and its dimensions of velocity. Suppose, 

specifically, that we consider the vibrations of a uniform string stretching from 

 to . If its transverse displacement is given by (2), we have in fact two waves 

traveling in opposite directions along the string, each with velocity a. For consider 

the function  )( atxf  . At 0t , it defines the curve )(xfy  , and at any later time 

1tt  , it defines the curve )( 1atxfy  . But these curves are identical except that 

the latter is translated to the right a distance equal to 1at . Thus the entire 

configuration moves along the string without distortion a distance of 1at  in 1t   units 

of time. The velocity with which the wave is propagated is therefore 
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Similarly, the function )( atxfg   defines a configuration which moves to the left 

along the string with constant velocity a. The total displacement of the string is, of 

course, the algebraic sum of these two traveling waves, see the Fig. below. 
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To carry the solution through in detail, let us suppose that the initial displacement 

of the string at any point x is given by )(x and that the initial velocity of the string 

at any point is )(x . Then, as conditions to determine the form of f and g, we have, 

from (2) and its derivatives with respect to t, 
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dividing by a, and integrating the last equation with respect to t we get  
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Fig. the propagation of a disturbance along a two-way infinite string 
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Example: Use the d’Alembert approach to find the solution of a wave function if 

the initial value of the displacement is given by 2)0,( xxu   and the initial velocity is 

xxut sin)0,(   ? 

 

Solution: 
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1.4  Flow of heat in conducting bodies 

 

1- Heat flows in the direction of decreasing temperature. 

2- The rate of heat flow through an area is proportion to the area and to the 

temperature gradient.  

 

x

u
tAkQ

x

u
tAQ

x

u
A

t

Q

















...

..  

Where k is the characteristic of the material and it is called the                   

heat conductivity. 

 

3- Quantity of heat lost or gained by a body when its temperature changes is 

proportional to the mass and temperature change of the body. 
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Where C is the heat energy which must be supplied to unit mass of the 

substance in order to raise it through unit temperature range, which is a 

constant called the specific heat. 

 

 

1.4.1 Derivation of the Mathematical model of Partial Differential Equation 

 

Consider a rod composed of a uniform heat-conducting material, with length L 

and with uniform cross-sectional area A. It will be assumed that the lateral surface 

of the rod is insulated and that at any time the temperature in the rod is the same 

throughout any given cross section but may vary from one cross section to another. 

Because of these variations in temperature, heat energy will be transported 

lengthwise along the rod from the hotter parts to the colder parts. Such a 

unidirectional transfer of heat energy is called a one-dimensional heat flow. 
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The minus sign express the familiar fact that heat flows in the direction of 

decreasing temperature. 
 

Then the heat loss or gain equals: 
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 where K is a positive constant called Diffusivity of the conducting material. 
 

 

And from the one-dimensional heat flow equation we can estimate without 

derivation the two-dimensional heat equation: 
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And in case of steady state heat flow 0
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1.4.2 General solution 
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Case1: 0  is not a solution. 

 

Case2: 0  is not a solution also. 

 

Case3: 0  
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Example: A rod L (cm) long with insulated lateral surface is initially at 

temperature (100 c
o
), if both ends are kept at zero temperature; find the 

temperature at any point ?  

 

Solution: 
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Boundary Conditions: 
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Initial Conditions: 
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Hint 

 

In case Uo is variable (with respect to x); we should find the related equation that 

represent the change in Uo with respect to x. (i.e): 
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1.5  One-Dimensional Consolidation 

 

 

 

 

 

 

 

 

 

 

 

1.5.1 Assumptions: 

 

At any time during the process of consolidation, the amount of settlement is 

directly related to the proportion of excess pore pressure that has been dissipated. 

The theory of consolidation is used to predict the progress of excess pore pressure 

dissipation as a function of time. Therefore, the same theory is also used to predict 

the rate of consolidation settlement. The one-dimensional theory of Terzaghi is 

most commonly used for prediction of consolidation settlement rate. The 

assumptions of the classical Terzaghi theory are as follows: 

 

1. Drainage and compression are one-dimensional. 

2. The compressible soil layer is homogenous and completely saturated. 

3. The mineral grains and pore water are incompressible. 

4. Darcy’s law governs the outflow of water from the soil. 

5. The applied load increment produces only small strains. Therefore, the thickness 

of the layer remains unchanged during the consolidation process. 

6. The hydraulic conductivity and compressibility of the soil are constant. 

7. The relationship between void ratio and vertical effective stress is linear and 

unique. This assumption also implies that there is no secondary compression 

settlement. 

8. Total stress remains constant throughout the consolidation process. 

 

 

Theory relates three quantities: 

 

a. excess pore pressure. 

b. depth z. 

c. time t. 
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