Chapter 6 Partial differential equations

Applying boundary and initial conditions to the general formula of the wave
equation:

@ y(0,t) =(Acos At + Bsin M).(C cosg(O) + Dsin%(O)j =0
y(0,t) = (Acos At +Bsin At).(C () + D(0))=0 = C=0

y(x,t) = (Acos At + Bsin At).D sinZ x
a

(2) y(L,t)=(AcosAt+BsinAt).D singL =0

y(L,t) = (ﬂ cos At + Bsin M).sin%L =0

csinfL=0 = Alenzr = 4="72 o 123
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(3 y(x0)="3sin ”T”x [Ar c0s(0) + Basin(0)]=0

y(x,0) = i(sin nTﬂxj An=0

n=1

If sinnT”x =0 = trivial solution
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Chapter 6 Partial differential equations

And by taking Fourier half-range Sin expansion:

T X

n
f(x)= Zb sin—— 3

Let ngn sin 1 x :ansinm =
n=1 L L n=1 I—

b =728, = B.=—_p
L nza

but b, =—If(x)sm—dx

L

J' |n—dx+_|'(L x)sm—dx

0
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4L . nrx
b,=——7sin— =
n“z
0 n=even
- 2 2
Bn = L p = b At sinn—ﬂ:%sinn—ﬂ: :”'3 n=159,..
nra nra n°z n°z°a n°z°a
2
- j’l‘s n=3711....
n"z°a

y(x,t) = ;(ndf L2a [ n;zj (Sinn{xj(s nnLLat)
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Chapter 6 Partial differential equations

1.3.3.2 The d’Alembert Solution of the \Wave Equation

If f is a function possessing a second derivative, then, by the chain rule,

of (x—at) .. orx=at) _ 4y
T oA x o
TR a0 oy

And from these results it is evident that y= f(x—at) satisfies the Wave equation

It is an equally simple matter to prove that if g is an arbitrary twice-differentiable
function, then g(x+at) is likewise a solution of (1). Hence, since it is a linear
equation, it follows that the sum

y=f(x—at)+g(x+at) ... (2

Is also a solution of (1). In fact, it can be shown that if f and g are arbitrary twice-
differentiable functions, then Eq. (2) is a complete solution of the wave equation.

This form of the solution of the wave equation is especially useful in revealing the
significance of the parameter a and its dimensions of velocity. Suppose,
specifically, that we consider the vibrations of a uniform string stretching from
—~otooo. If its transverse displacement is given by (2), we have in fact two waves

traveling in opposite directions along the string, each with velocity a. For consider
the function f(x—at). At t=0, it defines the curve y= f(x), and at any later time

t=t, it defines the curve y=f(x—at). But these curves are identical except that
the latter is translated to the right a distance equal to at,. Thus the entire
configuration moves along the string without distortion a distance of at, in t, units
of time. The velocity with which the wave is propagated is therefore

Similarly, the function g= f(x+at) defines a configuration which moves to the left

along the string with constant velocity a. The total displacement of the string is, of
course, the algebraic sum of these two traveling waves, see the Fig. below.
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Chapter 6 Partial differential equations

Fig. the propagation of a disturbance along a two-way infinite string

To carry the solution through in detail, let us suppose that the initial displacement
of the string at any point x is given by ¢(x) and that the initial velocity of the string

at any point is 8(x). Then, as conditions to determine the form of f and g, we have,
from (2) and its derivatives with respect to t,

y(x,t) = f(x—at) + g(x + at)

Y(X,0)=T(X)+g(X) =B(X) oo, @
y,(x,t)=—af'(x—at)+ag'(x+at)
oy

X =—af'(x)+ag'(x)=06(x)

dividing by a, and integrating the last equation with respect to t we get

y(%,0) =—f (X) + g(x) = é RGO —— )

90X) = 2 p(x) + = i@(x) dx by adding Egs. (1) and (2)
27" 2a)

F(x) = %¢(x) _ 2—1a fa(x) dx by deduction Egs. (1) and (2)
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Chapter 6 Partial differential equations

x+at

1 1
g(x+at)= E¢(X+ at) +2_a I@(x) dx

x—at

f(x— at)—%(/ﬁ(x at)—— je(x)dx

x—at x+at

y(x,t) = f(x— at)+g(x+at)_—¢(x at)—i je(x)dx+ ¢(x+at)+i J-H(x)dx

x+at

y(xt) = —[¢(x +at)+ (-] + 1 j 0(x) dx

Initial displacement

y(x,0) = ¢(x)

> >

Initial velocity
¥:(x,0) = 6(x)
X-at Xo x+at

Example: Use the d’Alembert approach to find the solution of a wave function if
the initial value of the displacement is given by u(x,0)=x* and the initial velocity is

u,(x,0) =sinx ?

Solution:

u(x.t) = —[¢(x cat) +g(x—at)|+ Zixjaé(x) dx

x+at

u(x, t)_—[(x+at) +(x—at) ]+— jsmxdx

()[

u(x, t)_—[x +2axt+a’?+ x> —2axt+a’t ]+ cos(x + at) — cos(x — at)]
u(x,t) = E[ZXZ + 2a2t2]+ Z—Z[cos(x —at) —cos(x + at)]

Note : sinmx sinnx = %[cos(m —n)x —cos(m+ n)x]

u(x,t) = x> +a’’ + Lsinxsinat
a
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Chapter 6 Partial differential equations

1.4 Flow of heat in conducting bodies

1- Heat flows in the direction of decreasing temperature.
2- The rate of heat flow through an area is proportion to the area and to the
temperature gradient.

t OX
ou
o At —
Q OX

ou
=k.At.—
Q OX
Where k is the characteristic of the material and it is called the
heat conductivity.

3- Quantity of heat lost or gained by a body when its temperature changes is
proportional to the mass and temperature change of the body.

AH o« M Au

AH =C.M. Au

Where C is the heat energy which must be supplied to unit mass of the
substance in order to raise it through unit temperature range, which is a
constant called the specific heat.

1.4.1 Derivation of the Mathematical model of Partial Differential Equation

Consider a rod composed of a uniform heat-conducting material, with length L
and with uniform cross-sectional area A. It will be assumed that the lateral surface
of the rod is insulated and that at any time the temperature in the rod is the same
throughout any given cross section but may vary from one cross section to another.
Because of these variations in temperature, heat energy will be transported
lengthwise along the rod from the hotter parts to the colder parts. Such a
unidirectional transfer of heat energy is called a one-dimensional heat flow.

DI

x+Ax

123



Chapter 6 Partial differential equations

Inflow Heat Q= —k.A.At.a—U
ax X
ou
Outflow Heat Q =-k.A.At.—
ax X+AX

The minus sign express the familiar fact that heat flows in the direction of
decreasing temperature.

Then the heat loss or gain equals:

AH :Q:—k.A.At.a—u B
aX)( ax X+AX
but AH=C.M.Au=C.p.AAXAU =
—k.A.At.a—u —{—k.A.At.a—u }:C.p.A.Ax.Au
aXX X+AX
)
AX— 500 | x|, OX|, _AXL)OC AU
At—" 50 AX At—m ol T F At
£(x) = Ax—im \of(x+Ax)—f(x)
AX
EICARY
OX \ OX ot
o%u ou
=C.p.—
ox? Pt
u__k o
ot C.p ox?

2
ou _ K 0 l12 where K is a positive constant called Diffusivity of the conducting material.
ot 0 X

And from the one-dimensional heat flow equation we can estimate without
derivation the two-dimensional heat equation:

ou o’u o«
—=K st 2
ot ox~ 0oy

And in case of steady state heat row%u =0,

O°U O _ o This is called the Lapl i
8X2+8y2:0 IS IS called the ap ace equatlon.
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Chapter 6 Partial differential equations

1.4.2 General solution

2
8_u:K6L;
ot O X

2
a_u:azauz where o? = K
ot O X
U t) =X, Ty

2

M_x71 and ZY_xrT
ot O X
X.T'=a?.X"T
T Xt
Ta? x “

Casel: x>0 is not a solution.

Case2: u =0 is not a solution also.

Case3: u=<0
let p=-A

TI 2 ' 2 2
T =1 = TH+X.a"T=0
d—T:—/iz.aZ.T

dt
d—T=—/12.a2.dt

InT =-2.a%t+c
T — efﬂZ.az.Hc — ec efﬂvz.az.t

T — C .eflz.az.t

X
X
X"+2.X =0

m +#=0 = m,=FAi
X = Acos Ax + Bsin Ax

2 = XU"=-2.X

U(x,t) = (Acos Ax + Bsin Ax) C.e #
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Chapter 6 Partial differential equations

Example: A rod L (cm) long with insulated lateral surface is initially at
temperature (100 c°), if both ends are kept at zero temperature; find the
temperature at any point ?

Solution:

U (x,t) = (Acos Ax+ Bsin Ax)C.e™* "
U(x,t) = (ﬂcosﬂ,x +Bsin ﬂ,x)e‘ﬂz-“z-t

Boundary Conditions:

Uu@Ot)=0 and U(L,t)=0

@) U@Oh=(A+0)e*“*'=0 = A=0 |
U(x,t)=BsinAx.e* < l

(2) U(Lt)=BsinAL.e*“ =0 = siniL=0

A=nzr = z:”T” o n=123...

a N

U(x,t)=> Basin nLLX e U

n=1

Initial Conditions:

U(x,0)=U,)

@ Ux0)=>E. sin”LLX ~U
n=1

(o]

U,=f()=>b, sin”LLX = B.=h
n=1

n

7T X

L L
bnzg_[f(x) sin 17X gy = 2Y% [sin™% g
L L L )

L

X

0 n=-even

% n=0dd
Nz

L
bnzzuoi{—cosm} =2U°[1—cosn7z]=
L nz L |, nz
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Chapter 6 Partial differential equations

U(x,t)=i2U0 (1—cosn7r)sinnLLXe_a v

-1 N7
Or
4U 1 g
= . NzrXx -« -t
Uxt)=—=2 > =Zsin——e Y
T n-135..0N
x=L U0
1.0
x/L tr t t,=0 =0 t, 1 t,=0
0.0 /]\ /]\
U/U, x=0 U
Normalized Chart Special Case Chart
Hint

In case U, is variable (with respect to x); we should find the related equation that
represent the change in U, with respect to x. (i.e):

Uo

Y-y, — Yo=Y
X=X X, =X
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Chapter 6 Partial differential equations

1.5 One-Dimensional Consolidation

@ Outflow water

———» Springs (Soil)

"_> Water

Section in the Soil
1.5.1 Assumptions:

At any time during the process of consolidation, the amount of settlement is
directly related to the proportion of excess pore pressure that has been dissipated.
The theory of consolidation is used to predict the progress of excess pore pressure
dissipation as a function of time. Therefore, the same theory is also used to predict
the rate of consolidation settlement. The one-dimensional theory of Terzaghi is
most commonly used for prediction of consolidation settlement rate. The
assumptions of the classical Terzaghi theory are as follows:

1. Drainage and compression are one-dimensional.

2. The compressible soil layer is homogenous and completely saturated.

3. The mineral grains and pore water are incompressible.

4. Darcy’s law governs the outflow of water from the soil.

5. The applied load increment produces only small strains. Therefore, the thickness
of the layer remains unchanged during the consolidation process.

. The hydraulic conductivity and compressibility of the soil are constant.

. The relationship between void ratio and vertical effective stress is linear and
unique. This assumption also implies that there is no secondary compression
settlement.

. Total stress remains constant throughout the consolidation process.

~N O

o

Theory relates three quantities:

a. EeXCess pore pressure.
b. depth z.
c. time t.
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