Chapter 6 Partial differential equations

water can escape only through the previous boundary, giving Hgqr = H, . A double-
drained layer is bounded by two pervious strata. Pore water can escape to either
boundary, and therefore Hg = Hy/2 .

The Figure also shows the solution to the equation in terms of the above
dimensionless parameters. For a double-drained layer, pore pressure dissipation is
modeled using the entire figure. However, for a single drained layer, only the
upper or lower half is used. As expected, U, is zero for all Z at the beginning of
the consolidation process (T = 0). As time elapses and pore pressures dissipate, U,
gradually increases to 1.0 for all points in the layer and c’v increases accordingly.

From the Figure, it is possible to find the consolidation ratio (and therefore u and
o'y) at any time t and any position z within the consolidating layer after the start of
loading. The time factor T can be calculated from the above equation given the C,
for a particular deposit, the total thickness of the layer, and the boundary drainage
conditions.

The Figure also provides some insight as to the progress of consolidation with
time. The isochrones (curves of constant T) represent the percent consolidation for
a given time throughout the compressible layer. For example, the percent
consolidation at the mid-height of a doubly drained layer for T = 0.2 is
approximately 23% (see point A in the Figure). However, at Z = 0.5, U, = 44% for
the same time factor.

Similarly, near the drainage surfaces at Z = 0.1, the clay is already 86%
consolidated. This also means, at that same depth and time, 86% of the original
excess pore pressure has dissipated and the effective stress has increased by a
corresponding amount.
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Fio. () Consolidation ratio as a function of Z and T. (Sowrce: Taylor, D. W. 1948. Fundamentals of Soil
Mechanics. John Wiley & Sons, New York.)
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1.5.4 Special solution

Ao, =1_£
u. u;

Consolidation Ratio U, =

U(z,t) = (C cos Az + Dsin Az) e*

Boundary conditions:

u(@0,t)=0
U(2H,,,t)=0

Initial conditions:

U(z,0)=uy,

@A) U@Ot=Ce*%'=0 = C=0
(2) U(@2H,.t)=Dsin2AH, e~ %' =0

sin2AH,, =0 = 2AH,=nx

nz
= n=123...
I"Idr
-n?z2.C,.t
wZ 2
U, =D,sin g e
dr
Uu=>U,
n=1
w n2z%.c,.t
T 2
U =>D,sin g Mo
n=1 dr

3 U(z0)=>D,sin22—y
n=1 2H

n=1 dr
2Hdr
D,=b, = 2 Iui sin 772
2H,, o H
D, - U; 2H,, cos N7 2
H,, nrz 2H,,
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0 n = even

D, -2 [cosnz —1]=|4u;

n n = odd
nz Nz

i du o Nz A

naas N7 2 Hg,
for facilitating Letn=2m+1 m=0,123......
Uy L @m+D 72 7<2ng21 =

o (2m+l)7r 2H,,
Let M- Z(@m+1)

2
-M2.C, .t

U= Z—sm Hear

dr

o0 2 ) )
Uu=> u'slnMZeMT where T =
m=0 M Hdr
UZ:AO'V =l—£
L’Ii ul
Mz __yer
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Example: At point A find after 8 months, (1) the consolidation ratio, (2) excess

pore pressure, (3) Actual pore pressure, and (4) actual stress?

o =100
m
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Water table

Solution:
Hy, ﬂ:2m
2
z=1.0m
7=t _Z_05
Hdr
C t l.2><§
T2 - _12_07
H dr 2

Solution using soil mechanic approach:

Pervious:

(1) From the Chart, applying Z=0.5and T =0.2

U

z

(2)

Or

©)

(4) o'v=Ac"v+ Soil Weight =45+ [(y, —7,)x H]=44+[(20-10)x 3] =74 =

AGY _ 5 aa
ui
AV _has = Aa'v=o.44x100=44k—'\2'
u; m
u=100—44=56k—'\2l
m
u =89V Y o Y4y —1-044-056
u. u. u.

u :0.56><100:56%

Actual U = u +Water Head =56 +(3x10) =86 k—|\2|
m
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Solution using Engineering Analysis Approach:

U= i&sin M ZeM'T  \where T = C, .t
Hdr H %ar
- 2 Z MIT N 2 —m2T
— =» — S5M
"« mZ::M H, nZ:(;Msm(OS )e
u
m | M :(2m_2+1)7[ & sin 0.5M g 02M’ T
V4 4
0 5 - 0.707 0.6105 0.55
3 4
1 3 ey 0.707 0.0118 0.0054
Sm 4
2 — e -0.707 0.0000044 | -0.000000792
>, 0.554

Y0554 = u=0.554xu, —554k—N

u.

Ac'v=100-55.4= 446k—N

Actual U =u +Water Head =55.4+ (3x10)=85.4 k—N

o'V =Ac'v + Soil Weight = 44.6 + [(7, —,) x H]|=44.6 +[(20 —10) x 3] = 74.6 k—N
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1.5.5 Average Consolidation:
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f(x)
For variable f(x): M
L
[ 00 |
f(x), =2—— L
(X)ay L
0
>, 2U M z 2
U=> ~Lsin e ™M
m=0 M Hdr
%
_[U dz /
U,= & 0, =Up—Uy, z-2 1 A
2de H_dr
IU dz
Oay :ui 1
2H,, 1/
.[U dz
2H
U, = Fav _q_ T 2651
ui ui
IU dz |
U 2H Oav
UH =1_ av =1_ dr u
u, u, i
2Hdr
jUd _Z—' e M Jsm—dz
0 dr
2Hy,
2u. H 2
=——1_d M7 .{cos—}
M dr o

=C0s2M —-1=cos(2m+1) r-1=-2

2Hdr
Cos
H dr o
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24 = Au. H 2
Udz=) —L_dr g MT
_(|). Z MZ

m=0
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1.6 Classification of partial differential equation

The simplicity and elegance of d'Alembert solution of the wave equation raises the
guestion of whether other partial differential equations can be solved by this
method. Let us consider first the possibility of finding solutions of the form
u=f(x+A4y) for the equation

2 2 2
6u+286u Cau

X’ M + p > =0 A,B,C Constants,
X X.0y y

Substituting our tentative solution, we have

Af " (X+AY)+2BAf " (X+Ay)+CA2 f'(x+1y)=0
Which will be an identify if and only if
CA+2BA+A=0

Thus there are two, one, or no (real) values of 4 for which solutions of the form
f(x+Ay) exists, according as the discriminant B>~ AC is greater than, equal to,
or less than zero. By analogy with the criterion for a conic to be a hyperbola,
a parabola, or an ellipse, the equation is said to be a hyperbolic, parabolic, or
elliptic equation according as B>~AC >0, B*-AC=0,or B?-AC<0.

The simplest, and in elementary applications the most important, examples of
hyperbolic, parabolic, and elliptic partial differential equations are respectively,

2 2
a. the wave equation a? aaxlj —ZTE =0 (hyperbolic)
: o’u  _, du .
b. the heat equation ~—a’—=0 (parabolic)
oX ot
o'u  0°

c. Laplace's equation

2

u ..
+——=0 (elliptic
ox* oy’ (elliptic)
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