Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$
\begin{equation*}
-12+4 i+2 v_{o}-4+6 i=0 \tag{2.6.1}
\end{equation*}
$$

Applying Ohm's law to the $6-\Omega$ resistor gives

$$
\begin{equation*}
v_{o}=-6 i \tag{2.6.2}
\end{equation*}
$$

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

$$
-16+10 i-12 i=0 \quad \Rightarrow \quad i=-8 \mathrm{~A}
$$

and $v_{o}=48 \mathrm{~V}$.

- Find currents and voltages in the circuit shown in Fig. 2.27(a).

(a)

(b)

Fig. 2.27: Example 3

Solution:

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$
\begin{equation*}
v_{1}=8 i_{1}, \quad v_{2}=3 i_{2}, \quad v_{3}=6 i_{3} \tag{2.8.1}
\end{equation*}
$$

Since the voltage and current of each resistor are related by Ohm's law as shown, we are really looking for three things: $\left(v_{1}, v_{2}, v_{3}\right)$ or $\left(i_{1}, i_{2}, i_{3}\right)$. At node a, KCL gives

$$
\begin{equation*}
i_{1}-i_{2}-i_{3}=0 \tag{2.8.2}
\end{equation*}
$$

Applying KVL to loop 1 as in Fig. 2.27(b),

$$
-30+v_{1}+v_{2}=0
$$

We express this in terms of i_{1} and i_{2} as in Eq. (2.8.1) to obtain

$$
-30+8 i_{1}+3 i_{2}=0
$$

or

$$
\begin{equation*}
i_{1}=\frac{\left(30-3 i_{2}\right)}{8} \tag{2.8.3}
\end{equation*}
$$

Applying KVL to loop 2,

$$
\begin{equation*}
-v_{2}+v_{3}=0 \quad \Rightarrow \quad v_{3}=v_{2} \tag{2.8.4}
\end{equation*}
$$

as expected since the two resistors are in parallel. We express v_{1} and v_{2} in terms of i_{1} and i_{2} as in Eq. (2.8.1). Equation (2.8.4) becomes

$$
\begin{equation*}
6 i_{3}=3 i_{2} \quad \Rightarrow \quad i_{3}=\frac{i_{2}}{2} \tag{2.8.5}
\end{equation*}
$$

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

$$
\frac{30-3 i_{2}}{8}-i_{2}-\frac{i_{2}}{2}=0
$$

or $i_{2}=2$ A. From the value of i_{2}, we now use Eqs. (2.8.1) to (2.8.5) to obtain

$$
i_{1}=3 \mathrm{~A}, \quad i_{3}=1 \mathrm{~A}, \quad v_{1}=24 \mathrm{~V}, \quad v_{2}=6 \mathrm{~V}, \quad v_{3}=6 \mathrm{~V}
$$

1.2.3-Series Resistors and Voltage Division:

- Figure 2.29 shows a single-loop circuit with two resistors in series.

Fig. 2.29: Two resistors in series

- To determine the voltage across each resistor in Fig. 2.29, we use;

$$
v_{1}=\frac{R_{1}}{R_{1}+R_{2}} v, \quad v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v
$$

1.2.4- Parallel Resistors and Current Division:

- Figure 2.31 shows the two resistors which are connected in parallel.

Fig. 2.31: Two resistors in parallel

- To determine the current in each resistor in Fig. 2.29, we use;

$$
i_{1}=\frac{R_{2} i}{R_{1}+R_{2}}, \quad i_{2}=\frac{R_{1} i}{R_{1}+R_{2}}
$$

1.2.5- Delta to Wye Conversion:

- Each resistor in the wye network is the product of the resistors in the two adjacent delta branches, divided by the sum of the three delta resistors.

1.2.6- Wye to Delta Conversion:

- Each resistor in the delta network is the sum of all possible products of Y resistors taken two at time, divided by the opposite Y resistor.

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
& R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

- Convert the delta network in Fig. 2.50(a) to an equivalent y network.

Fig. 2.50: Example 4

Solution:

Using Eqs. (2.49) to (2.51), we obtain

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{10 \times 25}{15+10+25}=\frac{250}{50}=5 \Omega \\
& R_{2}=\frac{R_{c} R_{a}}{R_{a}+R_{b}+R_{c}}=\frac{25 \times 15}{50}=7.5 \Omega \\
& R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{15 \times 10}{50}=3 \Omega
\end{aligned}
$$

The equivalent Y network is shown in Fig. 2.50(b).

1.3- Methods of Analysis

1.3.1-Nodal Analysis:

- Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

$$
\begin{equation*}
i=\frac{v_{\text {higher }}-v_{\text {lower }}}{R} \tag{3.3}
\end{equation*}
$$

- Calculate the node voltages in the circuit shown in Fig. 3.3(a).

(a)

Fig. 3.3(a): Example 5

At node 1, applying KCL and Ohm's law gives

$$
i_{1}=i_{2}+i_{3} \quad \Rightarrow \quad 5=\frac{v_{1}-v_{2}}{4}+\frac{v_{1}-0}{2}
$$

Multiplying each term in the last equation by 4 , we obtain

$$
20=v_{1}-v_{2}+2 v_{1}
$$

or

$$
\begin{equation*}
3 v_{1}-v_{2}=20 \tag{3.1.1}
\end{equation*}
$$

At node 2 , we do the same thing and get

$$
i_{2}+i_{4}=i_{1}+i_{5} \quad \Rightarrow \quad \frac{v_{1}-v_{2}}{4}+10=5+\frac{v_{2}-0}{6}
$$

Multiplying each term by 12 results in

$$
3 v_{1}-3 v_{2}+120=60+2 v_{2}
$$

or

$$
\begin{equation*}
-3 v_{1}+5 v_{2}=60 \tag{3.1.2}
\end{equation*}
$$

(b)

Fig. 3.3(b):

Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve the equations using any method and obtain the values of v_{1} and v_{2}.

METHOD 1 Using the elimination technique, we add Eqs. (3.1.1) and (3,1.2).

$$
4 v_{2}=80 \quad \Rightarrow \quad v_{2}=20 \mathrm{~V}
$$

Substituting $v_{2}=20 \mathrm{in}$ Eq. (3.1.1) gives

$$
3 v_{1}-20=20 \quad \Rightarrow \quad v_{1}=\frac{40}{3}=13.333 \mathrm{~V}
$$

METHOD 2 To use Cramer's rule, we need to put Eqs. (3.1.1) and (3.1.2) in matrix form as

$$
\left[\begin{array}{rr}
3 & -1 \tag{3.1.3}\\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
20 \\
60
\end{array}\right]
$$

The determinant of the matrix is

$$
\Delta=\left|\begin{array}{rr}
3 & -1 \\
-3 & 5
\end{array}\right|=15-3=12
$$

We now obtain v_{1} and v_{2} as

$$
\begin{aligned}
& v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left|\begin{array}{rr}
20 & -1 \\
60 & 5
\end{array}\right|}{\Delta}=\frac{100+60}{12}=13.333 \mathrm{~V} \\
& v_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left|\begin{array}{rr}
3 & 20 \\
-3 & 60
\end{array}\right|}{\Delta}=\frac{180+60}{12}=20 \mathrm{~V}
\end{aligned}
$$

giving us the same result as did the elimination method.
If we need the currents, we can easily calculate them from the values of the nodal voltages.

$$
\begin{gathered}
i_{1}=5 \mathrm{~A}, \quad i_{2}=\frac{v_{1}-v_{2}}{4}=-1.6668 \mathrm{~A}, \quad i_{3}=\frac{v_{1}}{2}=6.666 \mathrm{~A} \\
i_{4}=10 \mathrm{~A}, \quad i_{5}=\frac{v_{2}}{6}=3.333 \mathrm{~A}
\end{gathered}
$$

The fact that i_{2} is negative shows that the current flows in the direction opposite to the one assumed.

- Nodal Analysis with Voltage Sources:

A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it as shown in figure. 3.7.

Fig. 3.7: A circuit with a supernode

$$
\begin{gather*}
v_{1}=10 \mathrm{~V} \tag{3.10}\\
i_{1}+i_{4}=i_{2}+i_{3} \tag{3.11a}\\
\frac{v_{1}-v_{2}}{2}+\frac{v_{1}-v_{3}}{4}=\frac{v_{2}-0}{8}+\frac{v_{3}-0}{6} \tag{3.11b}\\
-v_{2}+5+v_{3}=0 \quad \Rightarrow \quad v_{2}-v_{3}=5 \tag{3.12}
\end{gather*}
$$

- For the circuit shown in Fig. 3.9, find the node voltages.

Fig. 3.9: Example 6

Solution:

The supernode contains the $2-\mathrm{V}$ source, nodes 1 and 2 , and the $10-\Omega$ resistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives

$$
2=i_{1}+i_{2}+7
$$

Expressing i_{1} and i_{2} in terms of the node voltages

$$
2=\frac{v_{1}-0}{2}+\frac{v_{2}-0}{4}+7 \quad \Rightarrow \quad 8=2 v_{1}+v_{2}+28
$$

or

$$
\begin{equation*}
v_{2}=-20-2 v_{1} \tag{3.3.1}
\end{equation*}
$$

To get the relationship between v_{1} and v_{2}, we apply KVL to the circuit in Fig. 3.10(b). Going around the loop, we obtain

$$
\begin{equation*}
-v_{1}-2+v_{2}=0 \quad \Rightarrow \quad v_{2}=v_{1}+2 \tag{3.3.2}
\end{equation*}
$$

From Eqs. (3.3.1) and (3.3.2), we write

$$
v_{2}=v_{1}+2=-20-2 v_{1}
$$

or

$$
3 v_{1}=-22 \quad \Rightarrow \quad v_{1}=-7.333 \mathrm{~V}
$$

and $v_{2}=v_{1}+2=-5.333 \mathrm{~V}$. Note that the $10-\Omega$ resistor does not make any difference because it is connected across the supernode.

