- Nodal Analysis with Voltage Sources:

A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it as shown in figure. 3.7.

Fig. 3.7: A circuit with a supernode

$$
\begin{gather*}
v_{1}=10 \mathrm{~V} \tag{3.10}\\
i_{1}+i_{4}=i_{2}+i_{3} \tag{3.11a}\\
\frac{v_{1}-v_{2}}{2}+\frac{v_{1}-v_{3}}{4}=\frac{v_{2}-0}{8}+\frac{v_{3}-0}{6} \tag{3.11b}\\
-v_{2}+5+v_{3}=0 \quad \Rightarrow \quad v_{2}-v_{3}=5 \tag{3.12}
\end{gather*}
$$

- For the circuit shown in Fig. 3.9, find the node voltages.

Fig. 3.9: Example 6

Solution:

The supernode contains the $2-\mathrm{V}$ source, nodes 1 and 2 , and the $10-\Omega$ resistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives

$$
2=i_{1}+i_{2}+7
$$

Expressing i_{1} and i_{2} in terms of the node voltages

$$
2=\frac{v_{1}-0}{2}+\frac{v_{2}-0}{4}+7 \quad \Rightarrow \quad 8=2 v_{1}+v_{2}+28
$$

or

$$
\begin{equation*}
v_{2}=-20-2 v_{1} \tag{3.3.1}
\end{equation*}
$$

To get the relationship between v_{1} and v_{2}, we apply KVL to the circuit in Fig. 3.10(b). Going around the loop, we obtain

$$
\begin{equation*}
-v_{1}-2+v_{2}=0 \quad \Rightarrow \quad v_{2}=v_{1}+2 \tag{3.3.2}
\end{equation*}
$$

From Eqs. (3.3.1) and (3.3.2), we write

$$
v_{2}=v_{1}+2=-20-2 v_{1}
$$

or

$$
3 v_{1}=-22 \quad \Rightarrow \quad v_{1}=-7.333 \mathrm{~V}
$$

and $v_{2}=v_{1}+2=-5.333 \mathrm{~V}$. Note that the $10-\Omega$ resistor does not make any difference because it is connected across the supernode.

1.3.2- Mesh Analysis:

- A mesh is a loop which does not contain any other loops within it.
- For the circuit in Fig. 3.18, find the branch currents and using mesh analysis.

Fig. 3.18: Example 7

Solution:

We first obtain the mesh currents using KVL. For mesh 1,

$$
-15+5 i_{1}+10\left(i_{1}-i_{2}\right)+10=0
$$

or

$$
\begin{equation*}
3 i_{1}-2 i_{2}=1 \tag{3.5.1}
\end{equation*}
$$

For mesh 2,

$$
6 i_{2}+4 i_{2}+10\left(i_{2}-i_{1}\right)-10=0
$$

or

$$
\begin{equation*}
i_{1}=2 i_{2}-1 \tag{3.5.2}
\end{equation*}
$$

METHOD 1 Using the substitution method, we substitute Eq. (3.5.2) into Eq. (3.5.1), and write

$$
6 i_{2}-3-2 i_{2}=1 \quad \Rightarrow \quad i_{2}=1 \mathrm{~A}
$$

From Eq. (3.5.2), $i_{1}=2 i_{2}-1=2-1=1 \mathrm{~A}$. Thus,

$$
I_{1}=i_{1}=1 \mathrm{~A}, \quad I_{2}=i_{2}=1 \mathrm{~A}, \quad I_{3}=i_{1}-i_{2}=0
$$

METHOD 2 To use Cramer's rule, we cast Eqs. (3.5.1) and (3.5.2) in matrix form as

$$
\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We obtain the determinants

$$
\begin{gathered}
\Delta=\left|\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right|=6-2=4 \\
\Delta_{1}=\left|\begin{array}{rr}
1 & -2 \\
1 & 2
\end{array}\right|=2+2=4, \quad \Delta_{2}=\left|\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right|=3+1=4
\end{gathered}
$$

Thus,

$$
i_{1}=\frac{\Delta_{1}}{\Delta}=1 \mathrm{~A}, \quad i_{2}=\frac{\Delta_{2}}{\Delta}=1 \mathrm{~A}
$$

- Mesh Analysis with Current Sources:
- A supermesh results when two meshes have a (dependent or independent) current source in common as shown below.

(a)
elements

(b)

$$
\begin{align*}
& -20+6 i_{1}+10 i_{2}+4 i_{2}=0 \\
& 6 i_{1}+14 i_{2}=20 \tag{3.18}\\
& \quad i_{2}=i_{1}+6 \tag{3.19}\\
& i_{1}=-3.2 \mathrm{~A}, \quad i_{2}=2.8 \mathrm{~A} \tag{3.20}
\end{align*}
$$

1.4- Circuit Theorems

1.4.1-Superposition Theorem:

- The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.
- Use the superposition theorem to find v in the circuit of Fig. 4.6.

Fig. 4.6: Example 8

Solution:

Since there are two sources, let

$$
v=v_{1}+v_{2}
$$

where v_{1} and v_{2} are the contributions due to the $6-\mathrm{V}$ voltage source and the 3-A current source, respectively. To obtain v_{1}, we set the current source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in Fig. 4.7(a) gives

$$
12 i_{1}-6=0 \quad \Rightarrow \quad i_{1}=0.5 \mathrm{~A}
$$

(a)

(b)

Figure 4.7
For Example 4.3: (a) calculating v_{1}, (b) calculating v_{2}.

Thus,

$$
v_{1}=4 i_{1}=2 \mathrm{~V}
$$

We may also use voltage division to get v_{1} by writing

$$
v_{1}=\frac{4}{4+8}(6)=2 \mathrm{~V}
$$

To get v_{2}, we set the voltage source to zero, as in Fig. 4.7(b). Using current division,

$$
i_{3}=\frac{8}{4+8}(3)=2 \mathrm{~A}
$$

Hence,

$$
v_{2}=4 i_{3}=8 \mathrm{~V}
$$

And we find

$$
v=v_{1}+v_{2}=2+8=10 \mathrm{~V}
$$

1.4.2- Thevenin's Theorem:

- Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source $V_{T h}$ in series with a resistor $R_{T h}$, where $V_{T h}$ is the open-circuit voltage at the terminals and $R_{T h}$ is the input or equivalent resistance at the terminals when the independent sources are turned off.
- Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to the left of the terminals $a-b$. Then find the current through $R_{L}=6,16$, and 36Ω.

Fig. 4.27: Example 9

Solution:

We find R_{Th} by turning off the $32-\mathrm{V}$ voltage source (replacing it with a short circuit) and the 2-A current source (replacing it with an
open circuit). The circuit becomes what is shown in Fig. 4.28(a). Thus,

$$
R_{\mathrm{Th}}=4 \| 12+1=\frac{4 \times 12}{16}+1=4 \Omega
$$

(a)

(b)

Figure 4.28
For Example 4.8: (a) finding R_{Th}, (b) finding V_{Th}.
To find V_{Th}, consider the circuit in Fig. 4.28(b). Applying mesh analysis to the two loops, we obtain

$$
-32+4 i_{1}+12\left(i_{1}-i_{2}\right)=0, \quad i_{2}=-2 \mathrm{~A}
$$

Solving for i_{1}, we get $i_{1}=0.5 \mathrm{~A}$. Thus,

$$
V_{\mathrm{Th}}=12\left(i_{1}-i_{2}\right)=12(0.5+2.0)=30 \mathrm{~V}
$$

Alternatively, it is even easier to use nodal analysis. We ignore the $1-\Omega$ resistor since no current flows through it. At the top node, KCL gives

$$
\frac{32-V_{\mathrm{Th}}}{4}+2=\frac{V_{\mathrm{Th}}}{12}
$$

or

$$
96-3 V_{\mathrm{Th}}+24=V_{\mathrm{Th}} \quad \Rightarrow \quad V_{\mathrm{Th}}=30 \mathrm{~V}
$$

as obtained before. We could also use source transformation to find V_{Th}.
The Thevenin equivalent circuit is shown in Fig. 4.29. The current through R_{L} is

$$
I_{L}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}}=\frac{30}{4+R_{L}}
$$

When $R_{L}=6$,

$$
I_{L}=\frac{30}{10}=3 \mathrm{~A}
$$

When $R_{L}=16$,

$$
I_{L}=\frac{30}{20}=1.5 \mathrm{~A}
$$

When $R_{L}=36$,

$$
I_{L}=\frac{30}{40}=0.75 \mathrm{~A}
$$

Figure 4.29
The Thevenin equivalent circuit for
Example 4.8.

