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3.1. Introduction 

To perform satisfactorily, shallow foundations must have two main characteristics: 

1. They have to be safe against overall shear failure in the soil that supports them. 

2. They cannot undergo excessive displacement, or settlement. (The term excessive is 

relative, because the degree of settlement allowed for a structure depends on 

several considerations.) 

 

The load per unit area of the foundation at which shear failure in soil occurs is called 

the ultimate bearing capacity, which is the subject of this chapter. In this chapter, we 

will discuss the following: 

 Fundamental concepts in the development of the theoretical relationship for 

ultimate bearing capacity of shallow foundations subjected to centric vertical 

loading 

 Effect of the location of water table and soil compressibility on ultimate 

bearing capacity 

 Bearing capacity of shallow foundations subjected to vertical eccentric loading 

and eccentrically inclined loading.  

 
4.2 General Concept 

4.2.1 Types of Shear Failure 
Shear Failure: Also called “Bearing capacity failure” and it’s occur when the 

shear stresses in the soil exceed the shear strength of the soil. 

 

There are three types of shear failure in the soil: 
1. General Shear Failure (Fig. 3.1)  
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Fig. 3.1 General shear failure. 
 
 

The following are some characteristics of general shear failure: 

 Occurs over dense sand or stiff cohesive soil. 

 Involves total rupture of the underlying soil. 

 There is a continuous shear failure of the soil from below the footing to the 

ground surface (solid lines on the figure above). 

 When the (load / unit area) plotted versus settlement of the footing, there is a 

distinct load at which the foundation fails (Qu) 

 The value of (Qu) divided by the area of the footing is considered to be the 

ultimate bearing capacity of the footing(qu). 

 For general shear failure, the ultimate bearing capacity has been defined as the 

bearing stress that causes a sudden catastrophic failure of the foundation. 

 As shown in the above Fig. 3.1, a general shear failure ruptures occur and 

pushed up the soil on both sides of the footing (In laboratory). 

 However, for actual failures on the field, the soil is often pushed up on only 

one side of the footing with subsequent tilting of the structure as shown in 

Fig. 3.2 below: 
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Fig. 3.2 Actual general shear failure. 
 

2. Local Shear Failure (Fig. 3.3): 
  
  

 
  
  
  
  
  

 
 
 
 

Fig. 3.3 Local  shear failure. 
 

The following are some characteristics of local shear failure: 

 Occurs over sand or clayey soil of medium compaction. 

 Involves rupture of the soil only immediately below the footing. 

 There is soil bulging on both sides of the footing, but the bulging is not as 

significant as in general shear. That’s because the underlying soil compacted 

less than the soil in general shear. 

 The failure surface of the soil will gradually (not sudden) extend outward 

from the foundation (not the ground surface) as shown by solid lines in       

Fig. 3.3. 
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 So, local shear failure can be considered as a transitional phase between 

general shear and punching shear. 

 Because of the transitional nature of local shear failure, the ultimate bearing 

capacity could be defined as the firs failure load (qu(1)) which occur at the point 

which have the first measure nonlinearity in the load/unit area-settlement curve 

(open circle), or at the point where the settlement starts rabidly increase (qu) 

(closed circle). 

 This value of (qu) is the required (load/unit area) to extends the failure surface 

to the ground surface (dashed lines as in Fig. 3.3). 

 In this type of failure, the value of (qu) it’s not the peak value so, this failure 

called (Local Shear Failure). 

 The actual local shear failure in field is proceed as shown in Fig. 3.4. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 3.4 Actual Local shear failure. 
 

3. Punching Shear Failure ( Fig. 3.5): 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3.5 Punching shear failure. 
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The following are some characteristics of punching shear failure: 

 Occurs over fairly loose soil. 

 Punching shear failure does not develop the distinct shear surfaces associated 

with a general shear failure. 

 The soil outside the loaded area remains relatively uninvolved and there is a 

minimal movement of soil on both sides of the footing. 

 The process of deformation of the footing involves compression of the soil 

directly below the footing as well as the vertical shearing of soil around the 

footing perimeter. 

 As shown in Fig. 3.5 above, the (q)-settlement curve does not have a dramatic 

break, and the bearing capacity is often defined as the first measure 

nonlinearity in the (q)-settlement curve(qu(1)). 

 Beyond the ultimate failure (load/unit area) (qu(1)), the (load/unit area)- 

settlement curve will be steep and practically linear. 

 The actual punching shear failure in field is proceed as shown in Fig.3.6: 

 
 
 
 
 
 
 
 
 
 

Fig. 3.6 Actual Punching shear failure. 
 
Note:  

Ultimate Bearing Capacity (ܝܙ):  

It’s the minimum load per unit area of the foundation that causes shear failure in 

the underlying soil. 
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Or, it’s the maximum load per unit area of the foundation can be resisted by the 

underlying soil without occurs of shear failure (if this load is exceeded, the shear 

failure will occur in the underlying soil). 

Allowable Bearing Capacity (ܔܔ܉ܙ) 

It’s the load per unit area of the foundation can be resisted by the underlying soil 

without any unsafe movement occurs (shear failure) and if this load is exceeded, the 

shear failure will not occur in the underlying soil till reaching the ultimate load. 

 
3.3 Terzaghi's Bearing Capacity Theory 

Terzaghi (1943) was the first to present a comprehensive theory for evaluation of 

the ultimate bearing capacity of rough shallow foundation. This theory is based on 

the following assumptions: 

1. The foundation is considered to be shallow if (Df≤B). 

2. The foundation is considered to be strip or continuous if (Width to length ratio 

approaches zero), and the derivation of the equation is to a strip footing. 

3. The effect of soil above the bottom of the foundation may be assumed to be 

replaced by an equivalent surcharge (q=γ×Df). So, the shearing resistance of this 

soil along the failure surfaces is neglected (Lines ab and cd in the below Fig. 3.7) 

4. The failure surface of the soil is similar to general shear failure (i.e. equation is 

derived for general shear failure) as shown in Fig. 3.7. 

Note: 

1. In recent studies, investigators have suggested that, foundations are considered to 

be shallow if [ Df≤(3→4)B], otherwise, the foundation is deep. 

2. Always the value of (q) is the effective stress at the bottom of the foundation. 
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Fig. 3.7 Bearing capacity failure in soil under a rough rigid continouus foundation  
 

The failure zone under the foundation can be separated into three parts                      

(see Fig. 3.7): 

1. The triangular zone ACD immediately under the foundation 

2. The radial shear zones ADF and CDE, with the curves DE and DF being arcs of a 

logarithmic spiral 

3. Two triangular Rankine passive zones AFH and CEG 

The angles CAD and ACD are assumed to be equal to the soil friction angle  '. 

Note that, with the replacement of the soil above the bottom of the foundation by an 

equivalent surcharge q, the shear resistance of the soil along the failure surfaces GI 

and HJ was neglected. 

Terzaghi’s Bearing Capacity Equations 
As mentioned previously, the equation was derived for a strip footing and general 

shear failure, this equation is: 

qu=cNc+qNq+0.5BγNγ        (for continuous or strip footing)         (3.1) 

Where 

qu=Ultimate bearing capacity of the soil (kN/m2) 

c=Cohesion of soil (kN/m2)  

q=۳܍ܞܑܜ܋܍܍܎ stress at the bottom of the foundation= Df (kN/m2) 
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Nc, Nq, Nγ=Bearing capacity factors (nondimensional)and are functions ܡܔܖܗ of the 

soil friction angle,ϕ ' 

 
The bearing capacity factors Nc, Nq, and Nγ are defined by 
 
                   (3.2)
  
 
 
                 (3.3) 
 
 
 
 
 
and  
 
 
                      (3.4) 
 
Kp = passive pressure coefficient 
 

The variations of the bearing capacity factors shown in Table 3.1 for general 

shear failure. 

The above equation (for strip footing) was modified to be useful for both square 

and circular footings as following: 

qu=1.3cNc+qNq+0.4BγNγ B     (square foundation)     (3.5) 

B=The dimension of each side of the foundation . 

qu=1.3cNc+qNq+0.3BγNγ B     (circular foundation)    (3.6) 

B=The diameter of the foundation . 

Note: 

 These two equations are also for general shear failure, and all factors in the two 

equations are the same as explained for strip footing.   
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Table 3.1 Terzaghi's bearing capacity factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now for local shear failure the above three equations were modified to be useful 

for local shear failure as following: 

qu=2/3c' Nc′+qNq′+0.5BγNγ′                      (for continuous or strip footing)         (3.7) 

qu=0.867 c' Nc′+qNq′+0.4BγNγ′                        (for square footing)      (3.8) 

qu=0.867 c' Nc′+qNq′+0.3BγNγ′                 (for circular footing)      (3.9) 

Nc′, Nq′, Nγ′=Modified bearing capacity factors can be calculated by using the 

bearing capacity factor equations ( for  Nc , Nq, and Nγ, respectively) by replacing ' 

by ϕ''  =tan−1(2/3 tan ϕ' ). The variation of Nc′, Nq′, and Nγ′ with the soil friction angle 

' is given in Table 3.2.  
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Table 3.2 Terzaghi's modified bearing capacity factors Nc′, Nq′, and Nγ′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Terzaghi’s bearing capacity equations have now been modified to take into account 

the effects of the foundation shape (B/L), depth of embedment (Df) , and the load 

inclination. This is given in Section 3.6. Many design engineers, however, still use 

Terzaghi’s equation, which provides fairly good results considering the uncertainty 

of the soil conditions at various sites. 

3.4 Factor of Safety 
Calculating the gross allowable load-bearing capacity of shallow foundations 

requires the application of a factor of safety (FS) to the gross ultimate bearing 

capacity, or  

     qall = qu / FS        (3.10) 

However, some practicing engineers prefer to use a factor of safety such that 
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Net stress increase on soil = (net ultimate bearing capacity) / FS       (3.11) 

The net ultimate bearing capacity is defined as the ultimate pressure per unit area 

of the foundation that can be supported by the soil in excess of the pressure caused by 

the surrounding soil at the foundation level. If the difference between the unit weight 

of concrete used in the foundation and the unit weight of soil surrounding is assumed 

to be negligible, then 

qnet(u) = qu – q                (3.12) 

where 

qnet(u) = net ultimate bearing capacity 

q =  Df 

So 

qall(net) = (qu – q) / FS     (3.13) 

 

The factor of safety as defined by Eq. (3.13) should be at least 3 in all cases. 

 

3.5 Modification of Bearing Capacity Equations 
for Water Table Equations (3.1) and (3.5) through (3.6) give the ultimate bearing 

capacity, based on the assumption that the water table is located well below the 

foundation. However, if the water table is close to the foundation, some modifications 

of the bearing capacity equations will be necessary. (See Figure 3.8.) 

Case I. If the water table is located so that 0  D1  Df, the factor q in the bearing 

capacity equations takes the form 

           q = effective surcharge = D1 + D2 (sat - w)                                         (3.14) 

where 

sat = saturated unit weight of soil 

w = unit weight of water 

Also, the value of   in the last term of the equations has to be replaced                         

by   ' = (sat - w). 
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Case II. For a water table located so that 0  d  B, 

                                                   q =  Df                 (3.15) 

In this case, the factor    in the last term of the bearing capacity equations must be 

replaced by the factor 

           

 

The preceding modifications are based on the assumption that there is no seepage 

force in the soil. 

Case III. When the water table is located so that d  B, the water will have no effect 

on the ultimate bearing capacity. 

 

 

 

 

 

 

 

 

 

Figure 3.8 Modification of bearing capacity equations for water table 

 

3.6 The General Bearing Capacity Equation (Meyerhof Equation) 
Terzagi’s equations shortcomings: 

 They don’t deal with rectangular foundations (0<B/L<1). 

 The equations do not take into account the shearing resistance along the failure 

surface in soil above the bottom of the foundation (as mentioned previously). 

 The inclination of the load on the foundation is not considered (if exist).on the 

foundation may be inclined.  
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To account for all these shortcomings, Meyerhof (1963) suggested the following 

form of the general bearing capacity equation: 

qu=cNcFcsFcdFci + qNqFqsFqdFqi + 0.5BγNγFγsFγdFγi                                          (3.15) 

Where 

 c=Cohesion of the underlying soil 

q=Effective stress at the level of the bottom of the foundation. γ=unit weight of the 

underlying soil 

B=Width of footing (=diameter for a circular foundation).  

Nc, Nq, Nγ=Bearing capacity factors  

Fcs, Fqs, Fγs=Shape factors  

 Fcd, Fqd, Fγd=Depth factors   

Fci, Fqi, Fγi=Inclination factors  

Notes: 

1. This equation is valid for both general and local shear failure. 

2. This equation is similar to original equation for ultimate bearing capacity 

(Terzaghi’s equation) which derived for continuous foundation . The shape, depth, 

and load inclination factors are empirical factors based on experimental data. 

 

Bearing Capacity Factors: 
The basic nature of the failure surface in soil suggested by Terzaghi now appears 

to have been borne out by laboratory and field studies of bearing capacity (Vesic, 

1973). However, the angle α  shown in Fig. 3.6 is closer to 45+ϕ' /2 than to ϕ'. If this 

change is accepted, the values of Nc, Nq, and N for a given soil friction angle will 

also change from those given in Table 3.1. With α  = 45+ϕ' /2, it can be shown that 

 

            (3.16) 

 

and  

            (3.17) 
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Equation (3.17) for Nc was originally derived by Prandtl (1921), and Eq. (316) for 

Nq was presented by Reissner (1924). Caquot and Kerisel (1953) and Vesic (1973) 

gave the relation for N as 

            (3.18) 

 

Table 3.3 shows the variation of the preceding bearing capacity factors with soil 

friction angles. 

Table 3.3 Bearing Capacity Factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shape, Depth, and Inclination Factors 
Commonly used shape, depth, and inclination factors are given in Table 3.4. 
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Table 3.4 Shape, Depth and Inclination Factors [DeBeer (1970); Hansen (1970); 

Meyerhof (1963); Meyerhof and Hanna (1981)] 
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3.7 Eccentrically Loaded Foundation 
If the load applied on the foundation is in the center of the foundation without 

eccentricity, the bearing capacity of the soil will be uniform at any point under the 

foundation (as shown in Fig. 3.9) because there is no any moments on the foundation, 

and the general equation for stress under the foundation is:  

Stress= Q/A ± Mx y /Ix ± My X/ Iy 

In this case, the load is in the center of the foundation and there are no moments so, 

Stress= Q/A (uniform at any point below the foundation) 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Non-Eccentricity loaded foundations 

However, in several cases, as with the base of a retaining wall or neighbor footing, 

the loads does not exist in the center, so foundations are subjected to moments in 

addition to the vertical load (as shown Fig. 3.10). In such cases, the distribution of 

pressure by the foundation on the soil is not uniform because there is a moment 

applied on the foundation and the stress under the foundation will be calculated from 

the general relation:  

Stress= Stress= Q/A ± Mx y /Ix ± My X/ Iy  (in case of two way eccentricity) 

But, in this section we deal with (one way eccentricity), the equation will be: 

Stress= Q/A ± M c /I 
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Fig. 3.10 Eccentricity loaded foundation 

Since the pressure under the foundation is not uniform, there are maximum and 

minimum pressures (under the two edges of the foundation) and we concerned about 

calculating these two pressures. 

General equation for calculating maximum and minimum pressure: 

Assume the eccentricity is in direction of (B)  

Stress=q= Q/A ± M c / I  

A= B × L   

M= Q × e  

c= B/2 (maximum distance from the center) 

I= (B3×L) /12 (I is about the axis that resists the moment) 

Substitute in the equation, the equation will be: 

 

q= Q/(B×L) ± (Q×e×B)/(( 2B3×L)/12)→q=Q/(B×L)± (6eQ/(B2L)→ 

ݍ = ொ
஻ ×௅

 (1 ∓ ଺௘
஻

)   General Equation 

Now, there are three cases for calculating maximum and minimum pressures 

according to the values of (e and B/6 ) to maintain minimum pressure always≥0 
Case I. (For ۰>܍/૟):  

௠௔௫ݍ =
ܳ

× ܤ ܮ
 (1 +

6݁
ܤ

) 
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௠௜௡ݍ =
ܳ

× ܤ ܮ
 (1 −

6݁
ܤ

) 

 

Note that when e< B/6 the value of qmin will be positive (i.e. compression). 

If eccentricity in (L) direction: (For e<L/6): 

௠௔௫ݍ =
ܳ

× ܤ ܮ
 (1 +

6݁
ܮ

) 

 

௠௜௡ݍ =
ܳ

× ܤ ܮ
 (1 −

6݁
ܮ

) 

 

 

 

Case II. (For ۰=܍/૟):  

௠௔௫ݍ =
ܳ

× ܤ ܮ
 (1 +

6݁
ܤ

) 

௠௜௡ݍ =
ܳ

× ܤ ܮ
 (1 − 1) = 0 

 

 

Case III. (For ۰< ܍/૟): 
For e  B/6, qmin will be negative, which means that tension will develop. Because 

soil cannot take any tension, there will then be a separation between the foundation 

and the soil underlying it. The nature of the pressure distribution on the soil will be as 

shown in Figure below. The value of qmax is then 

 
 
 
 
 
The exact distribution of pressure is difficult to estimate. 
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3.8 Ultimate Bearing Capacity under Eccentric  

Loading - One-Way Eccentricity 
Effective Area Method (Meyerhoff, 1953) 

In 1953, Meyerhof proposed a theory that is generally referred to as the effective 

area method. 

The following is a step-by-step procedure for determining the ultimate load that the 

soil can support and the factor of safety against bearing capacity failure: 

Step 1. Determine the effective dimensions of the foundation (Fig. 3.10): 

B' = effective width = B - 2e 

L' = effective length = L 

Note that if the eccentricity were in the direction of the length of the foundation, 

the value of L' would be equal to L - 2e. The value of B' would equal B. The smaller 

of the two dimensions (i.e., L' and B') is the effective width of the foundation. 

Step 2. Use Eq. (3.15) for the ultimate bearing capacity: 
 

qu=cNcFcsFcdFci + qNqFqsFqdFqi + 0.5B' γ Nγ Fγs Fγd Fγi     
 

To evaluate Fcs, Fqs, and Fs, use the relationships given in Table 3.4 with effective 

length and effective width dimensions instead of L and B, respectively. To determine 

Fcd, Fqd, and Fd, use the relationships given in Table 3.4. However, do not replace B 

with B'. 
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Step 3. The total ultimate load that the foundation can sustain is 

         (3.19)                 

where A'= effective area. 

Step 4. The factor of safety against bearing capacity failure is    

  

 

Step 5. Check the factor of safety against qmax  , or FS= q'
u / qmax. 

It is important to note that q'
u is the ultimate bearing capacity of a foundation of 

width B'= B - 2e with a centric load (Fig. 3.10a). However, the actual distribution of 

soil reaction at ultimate load will be of the type shown in Fig. 3.10b. In Figure 3.10b, 

qu(e) is the average load per unit area of the foundation. Thus,   

qu(e) = [q'
u(B-2e)] / B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Definition of q'
u and qu(e) 
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3.9 Bearing Capacity of Layered Soils: Stronger Soil 

Underlain by Weaker Soil (c'-'  soil) 

 The bearing capacity equations presented in preceding sections 

involve cases in which the soil supporting the foundation is 

homogeneous and extends to a considerable depth.  

 The cohesion, angle of friction, and unit weight of soil were assumed 

to remain constant for the bearing capacity analysis. However, in 

practice, layered soil profiles are often encountered. In such 

instances, the failure surface at ultimate load may extend through two 

or more soil layers, and a determination of the ultimate bearing 

capacity in layered soils can be made in only a limited number of 

cases.  

 This section features the procedure for estimating the bearing 

capacity for layered soils proposed by Meyerhof and Hanna (1978) 

and Meyerhof (1974) in c'-'  soil. 

 .Figure 3.11 shows a shallow, continuous foundation supported by a 

stronger soil layer, underlain by a weaker soil that extends to a great 

depth. 

  For the two soil layers, the physical parameters are as follows: 
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 At ultimate load per unit area (qu ) , the failure surface in soil will be 

as shown in the figure. 

  If the depth H is relatively small compared with the foundation 

width B, a punching shear failure will occur in the top soil layer, 

followed by a general shear failure in the bottom soil layer. This is 

shown in Figure 3.11a.  

 If the depth H is relatively large, then the failure surface will be 

completely located in the top soil layer, which is the upper limit for 

the ultimate bearing capacity. This is shown in Figure 3.11b. 
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 The ultimate bearing capacity for this problem, as shown in Figure 

3.11a, can be given as 

 
 

 

 

 

 

 

 

Note that, in the above Equation, 
 

 

 

Equation above can be simplified to the form 
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Note that q1  and q2 are the ultimate bearing capacities of a continuous 

foundation of width B under vertical load on the surfaces of homogeneous 

thick beds of upper and lower soil, or 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining Equations  above yields 

 

 

 

For rectangular foundations, the preceding equation can be extended 

to the form 
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3.10 Foundations on Rock 

 On some occasions, shallow foundations may have to be built on 

rocks, as shown in Figure 3.14.  

 For estimation of the ultimate bearing capacity of shallow 

foundations on rock, we may use Terzaghi’s bearing capacity 

equations with the bearing capacity factors given here (Stagg and 

Zienkiewicz, 1968; Bowles, 1996): 
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 The unconfined compression strength and the friction angle of rocks 

can vary widely. Table 3.5 gives a general range of quc for various 

types of rocks. It is important to keep in mind  that the magnitude of 

quc  and ' (hence c' ) reported from laboratory tests are for intact rock 

specimens. It does not account for the effect of discontinuities.  

 To account for discontinuities,  Bowles (1996) suggested that the 

ultimate bearing capacity qu should be modified as 

 

 

 

 

 

 

 

 


