CHAPTER 9 )

P

_—

Problems in Regression
Analysis

9.1 MULTICOLLINEARITY

Multicollinearity refers to the case in which two or more explanatory variables in the regression
model are highly correlated, making it difficult or impossible to isolate their individual effects on the
dependent variable. With multicollinearity, the estimated OLS coeflicients may be statistically insig-
nificant (and even have the wrong sign) even though R* may be “high.” Multicollinearity can some-
times be overcome or reduced by collecting more data, by utili zing a priori information, by transforming
the functional relationship (see Prob. 9.3), or by dropping one of the highly collinear variables.

EXAMPLE 1. Table 9.1 gives the growth rate of imports ¥, gross domestic product X'y, and inflation X5 for the
United States from 1985 to 1999 (the reason for using growth rates is explained in Chap. 11). It is expected that the
level of imports will be greater as GDP and domestic prices increase. Regressing Y on X) and X5, we get

Y =0.0015+ 1.39X, + 009X,  R* =042
{l.4ﬁ} (1.85) r|:=n.33

Table 9.1 Growth Rate of Imports, GDP and Inflation in the United States from 1985 to 1999

Year 1985 1986 1987 1988 1989 1990 1991 1992
Y 0.0540 | 0.0656 [ 0.1475 0.0686 [ 0.0455| 0.0827 | —=0.0157 | 0.0753
X 0.0709 | 0.0505] 0.0780 0.0750 [ 0.0627 | 0.0464 | 0.0399 | 0.0640
Xy —0.1593 [ —0.2683 | 0.4801 0.1348 | =0.0218 | 0.1612 | —0.2511 | —0.2611

Year 1993 1994 1995 1996 1997 1998 1999
Y 0.0841 | 0.1540 | 0.0578 0.0918 | 0.0949 | 0.0555] 0.1593

X 0.0503 | 0.0621 | 0.0432 0.0600 [ 0.0623 | 0.0585| 0.0652

X 0.0527 | —0.1500 | 0.0251 | —0.1119 [ =0.0131 | =0.3613 | 0.2579

Source: St. Louis Federal Reserve (Burcau of Economic Analysis),
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Neither 5, nor 5; is statistically significant at the 5% level. !;; is significant at the 10% level, but the R* indicates
that 42% of the variation in Y is explained by the model even though none of the independent variables stand out
individually. The correlation is positive correlation X'} and X, as indicated by rj;.  Reestimating the regression
without either X5 or X, we get

Y=-004+ 206X, R =0.26
(2.13)

- .

Y=009+ 0.11 X, R- =10.32
(2.48)

In simple regressions, the significance of both .X'; and X, increases, with X', almost significant at the 5% level and .Y,
significant at more than the 5% level, indicating that the original regression exhibited multicollinearity. However,
dropping either variable from the regression leads to biased OLS estimates, because economic theory suggests that
both GDP and prices should be included in the import function.

9.2 HETEROSCEDASTICITY

If the OLS assumption that the variance of the error term is constant for all observations does not
hold, we face the problem of heteroscedasticity. This leads to unbiased but inefficient (i.e., larger than
minimum variance) estimates of the coefficients, as well as biased estimates of the standard errors (and,
thus, incorrect statistical tests and confidence intervals).

One test for heteroscedasticity involves arranging the data from small to large values of the inde-
pendent variable X" and running two regressions, one for small values of X" and one for large values,
omitting, say, one-fifth of the middle observations. Then, we test that the ratio of the error sum of
squares (ESS) of the second regression to the first regression is significantly different from zero, using the
F table with (n — d — 2k)/2 degrees of freedom, where n is the total number of observations, d is the
number of omitted observations, and & is the number of estimated parameters.

If the error variance is proportional to X* (often the case), heteroscedasticity can be overcome by
dividing every term of the model by X and then reestimating the regression using the transformed
variables.

EXAMPLE 2. Table 9.2 gives average wages Y and the number of workers employed X" by 30 firms in an industry.
Regressing Y on X for the entire sample, we get

Y= 7.5 + 0009Y R =090
(40.27) (16.10)

The results of regressing Y on X for the first 12 and for the last 12 observations are, respectively
Y= 8140006 R =0.66
(39.4) (4.36) ESS, = 0.507

bl

Y= 6.1+0013X R =0.60
(4.16) (3.89)  ESS, = 3.095

Table 9.2 Average Wages and Number of Workers Employed

Average Wages Workers Employed
8.40 8.40 8.60 8.70 8.90 9.00 100
8.90 9.10 9.30 9.30 9.40 9.60 200
9.50 9.80 9.90 10.30 10.30 10.50 300
10.30 10.60 10.90 11.30 11.50 11.70 400
11.60 11.80 12.10 12.50 12.70 13.10 500
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Since ESS,/ESS, = 3.095/0.507 = 6.10 exceeds Fig,10 = 2.97 at the 5% level of significance (see App. 7), the hypoth-
esis of heteroscedasticity is accepted. Reestimating the transformed model 1o correct for heteroscedasticity, we gel
;= 0.008 + 7.8 (i) R*=0.99

(14.43) (76.58) A

Note that the slope coefficient is now given by the intercept (i.e., 0.008), and this is smaller than before the
adjustment (i.e., 0.009).

9.3 AUTOCORRELATION

When the error term in one time period is positively correlated with the error term in the previous
time period, we face the problem of (positive first-order) autocorrelation. This is common in time-series
analysis and leads to downward-biased standard errors (and, thus, to incorrect statistical tests and
confidence intervals).

The presence of first-order autocorrelation is tested by utilizing the table of the Durbin-Watson
statistic (App. 8) at the 5 or 1% levels of significance for n observations and &’ explanatory variables. If
the calculated value of d from Eq. (9.1) is smaller than the tabular value of d; (lower limit), the
hypothesis of positive first-order autocorrelation is accepted:

E(Er — € }2
A== (9.1)
>
=1
The hypothesis is rejected if d > dy; (upper limit), and the test is inconclusive if d; < d < dy. (For
negative autocorrelation, see Prob. 9.8.)
One way to correct for autocorrelation is to first estimate p (Greek letter rho) from Eq. (9.2)

Yy =by(1 = p)+pYi_y + 5,X, = bipX,_ + (9-2)
and then reestimate the regression on the transformed variables:
(Y, = pYi_y) = bo(1 = p) + by (X, — pX,_y) + (1, — pr,_y) (9.3

To avoid losing the first observation in the differencing process, Y,4/1 — g~ and X}/l — p~ are used for
the first transformed observations of Y and X, respectively. When p = 1, autocorrelation can be
corrected by rerunning the regression in difference form and omitting the intercept term (see Prob. 9.12).

EXAMPLE 3. Table 9.3 gives the level of inventories ¥ and sales S, both in billions of dollars, in U.S. manu-
facturing from 1979 to 1998. Regressing Y on X, we get

Y, =126.06 + 1.03.X; R =094
(16.68) d =0.58

Table 9.3 Inventery and Sales (Both in Billions of Dollars) in U.S. Manufacturing 1979-1998

Year | 1979 1980 1981 1982 1983 1584 1985 1986 1987 1988

Y 242 265 283 312 312 340 335 323 338 369

X 144 154 168 163 172 191 194 195 206 225

Year | 1989 | 1990 | 1991 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998
Y 391 405 391 383 384 405 431 437 456 467

X 237 243 240 250 261 279 300 310 327 338

Sonrce: Economic Report of the President.
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Since d = 0.58 < dy = 1.20 at the 5% level of significance with n = 20 and k" = 1 (from App. 8), there is evidence of
autocorrelation.  An estimate of p is given by the coefficient of Y,_; in the following regression:

¥, = 6688+ 0.58 ¥,_,+ 0.88 X,— 0.50 X,_, R =097
(3.43) (2.36)  (~1.04)

Utilizing p = 0.58 to transform the original variables (it is a coincidence here that p = d), as in Eq. (9.3), and using
24271 —0.58% = 197.14 and 144v'1 — 0.58% = 117.30 for the first transformed observations of Y and X, respec-
lively, we rerun the regression on the transformed variables (denoted by the asterisk) and get

Y, = 65.68 +0.94X7 R* =083
(9.34) d=1.78

Since now d = 1.78 > dyy = 1.41 (from App. 8), there is no evidence of autocorrelation. Note that the  value of X7
is less than for X, (but is still highly significant) and R* is also lower.

9.4 ERRORS IN VARIABLES

Errors in variables refer to the case in which the variables in the regression model include measure-
ment errors. Measurement errors in the dependent variable are incorporated into the disturbance term
and do not create any special problem. However, errors in the explanatory variables lead to biased and
inconsistent parameter estimates.

One method of obtaining consistent OLS parameter estimates is to replace the explanatory variable
subject to measurement errors with another vanable (called an instrumental variable) that is highly
correlated with the original explanatory variable but is independent of the error term.  This is often
difficult to do and somewhat arbitrary. The simplest instrumental variable is usually the lagged
explanatory variable in question (see Example 4). Another method used when only X is subject to
measurement errors involves regressing X" on Y (inverse least squares; see Prob. 9.15).

EXAMPLE 4. Table 9.4 gives inventories Y, actual sales .Y, and hypothetical values of X* that include measure-

ment error X', all in billions of dollars, in U.S. retail trade from 1979 to 1998. X and Y are assumed to be error-
free. Regressing Y, on X}, we pet

Y,= 292 4+ 153X, R =09
72

2
(0.72) (56.67)
Regressing ¥, on X, (if X, is not available), we get

Y,= 678 + 146 X, R =099
(1.70)  (56.23)

Table 9.4 Inventories and Sales (in Billions of Dollars) in U.S. Retail Trade, 1979-1998

Year | 1979 | 1980 | 1981 1982 | 1983 [ 1984 | 1985 | 1986 | 1987 | 1988

Y ) 121 133 135 148 168 182 187 208 219

X 75 80 87 89 98 107 15 121 128 138

X 76 82 89 91 100 109 118 124 132 142

Year | 1989 | 1990 [ 1991 1992 | 1993 | 1994 | 1995 | 1996 [ 1997 | 1998

Y 237 240 243 252 269 294 310 321 330 341

X 147 154 155 163 174 188 197 209 218 229

X 152 159 160 169 180 195 204 217 226 238

Source: Economic Report of the President,
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Note that &} < by; furthermore, b, falls outside the 95% confidence interval of ] (1.40 to 1.51). Using X, asan
instrumental variable for X, (il X, is suspected to be correlated with u,), we get

Y=1388 + 1.0 X, R =09
(2.48)  (40.19)

The coeflicient on X,_, is closer to the true one {5, falls in the 95% confidence interval of 1.42 to 1.57), and is
consistent,

Solved Problems

MULTICOLLINEARITY

9.1

9.2

(a) What is meant by perfect multicollinearity? What is its effect? (b) What is meant by high, but
not perfect, multicollinearity? What problems may result? (¢) How can multicollinearity be
detected? (d) What can be done to overcome or reduce the problems resulting from multi-
collinearity?

(a) Two or more independent variables are perfectly collincar if one or more of the variables can be
expressed as a linear combination of the other variable(s). For example, there is perfect multi-
collinearity between X, and X5 il X, =2X, or X, =5—(1/3)X5. I two or more explanatory
variables are perfectly linearly correlated, it will be impossible to calculate OLS estimates of the
paramelters because the system of normal equations will contain two or more equations that are not
independent.

(b) High, but not perfect, nulticollinearity refers to the case in which two or more independent variables in
the regression model are highly correlated. This may make it diflicult or impossible to isolate the efTect
that each of the highly collinear explanatory variables has on the dependent variable. However, the
OLS estimated coeflicients are still unbiased (il the model is properly specified). Furthermore, if the
principal aim is prediction, multicollinearity is not a problem if the same multicollinearity pattern
persists during the forecasted period.

(¢) The classic case of multicollinearity occurs when none of the explanatory variables in the OLS
regression is statistically significant (and some may even have the wrong sign), even though R
may be high (say, between 0.7 and 1.0). In the less clearcut cases, detecting multicollinearity
may be more difficult. High, simple, or partial correlation coefficients among explanatory vari-
ables are sometimes used as a measure of multicollinearity. = However, serious multicollinearity
can be present even il simple or partial correlation coeflicients are relatively low (i.e., less than
0.5).

(d) Serious multicollinearity may sometimes be corrected by (1) extending the size of the sample data,
(2) utilizing a priori information (e.g., we may know from a previous study that b, = 0.254,),
(3) transforming the functional relationship, or (4) dropping one of the highly collinear variables

(however, this may lead to specification bias or error if theory tells us that the dropped variable should
be included in the model).

Table 9.5 gives the output in tons @, the labor input in worker-hours L, and the capital
input in machine-hours K, of 15 firms in an industry. (a) Fit a Cobb-Douglas produc-
tion function of the form Q = byL"K"¢" to the data and find R* and the simple correla-
tion coeflicient between In L and InK. () Regress In Q on In L only. (¢) Regress
In Q on InK only. (d) What can be concluded from the results with regard to multi-
collinearity?
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Table 9.5 Output, Labor, and Capital Inputs of 15 Firms in an Industry
Firm| |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q | 2350 ] 2470 | 2110 | 2560 | 2650 | 2240 | 2430 | 2530 | 2550 | 2450 | 2290 | 2160 | 2400 | 2490 | 2590
L[ 2334|2425 [ 2230 | 2463 | 2565 | 2278 | 2380 | 2437 | 2446 | 2403 | 2301 | 2253 | 2367 | 2430 | 2470
K | 1570 | 1850 | 1150 | 1940 | 2450 | 1340 | 1700 | 1860 | 1880 | 1790 | 1480 | 1240 | 1660 | 1850 | 2000

(a) Transforming the data into natural log form as shown in Table 9.6 and then regressing In Q on In L and

(h)

In K, we gel

R? = 0,969

InQ =0.50+0.76In L +0.191n K R =0.964

(1.07) (1.36)
MLwx = 0.992
InQ=-550 + L7lInL R =0.964
(=7.74)  (18.69)
InQ =530+0.34InK R® = 0.966

(c)

(4.78) (19.19)

(d) Since neither b, nor b, in part a is statistically significant at the 5% level (i.c., they have unduly large
standard errors) while R® = 0.97, there is clear indication of serious multicollinearity.  Specifically,
large firms tend to use both more labor and more capital than do small firms. This is confirmed by the
very high value of 0.99 for the simple correlation coefficient between In L and In K.
simple regressions were reestimated with either In L or In K as the only explanatory variable. In these
simple regressions, both In L and In K are statistically significant at much more than the 1% level with
R® exceeding 0.96. However, dropping either In K or In Z from the multiple regression leads to a biased

Table 9.6 OQutput, Labor, and Capital Inputs in Original and Log Form

In parts b and ¢,

Firm 0 L K InQ InL In K
1 2350 2334 1570 7.76217 | 7.75534 | 7.35883
2 2470 2425 1850 7.81197 | 7.79359 | 7.52294
3 2110 2230 1150 7.65444 | 7.70976 | 7.04752
4 2560 2463 1940 7.84776 | 7.80914 | 7.57044
5 2650 2565 2450 7.88231 | 7.84971 | 7.80384
6 2240 2278 1340 7.71423 | 7.73105 | 7.20042
7 2430 2380 1700 7.79565 | 7.77486 | 7.43838
8 2530 2437 1860 7.83597 | 7.79852 | 7.52833
9 2550 2446 1880 7.84385 | 7.80221 | 7.53903

10 2450 2403 1790 7.80384 | 7.78447 | 7.48997
1 2290 2301 1480 7.73631 | 7.74110 | 7.29980
12 2160 2253 1240 7.67786 | 7.72002 | 7.12287
13 2400 2367 1660 7.78322 | 7.76938 | 7.41457
14 2490 2430 1850 7.82004 | 7.79565 | 7.52294
15 2590 2470 2000 7.85941 | 7.81197 | 7.60090
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OLS slope estimate for the retained variable because economic theory postulates that both labor and
capital should be included in the production function.

9.3  How can the multicollinearity difficulty faced in Prob. 9.2 be overcome il it is known that
constant returns to scale (i.e., by 4+ by = 1) prevail in this industry?

With constant returns to scale, the Cobb-Douglas production function can be rewritten as
Q - !,uLhKl-l'l'cll'
Expressing this production function in double-log form and rearranging it, we get

INQ =Inby+b InL+(1 —b)InK +u
InQ—-InK=Inby+b(InL-InK)+u

SettingInQ* =InQ@—-InK and InL* = InL = In K and then regressing InQ* on In L, we get

InQ* = 007 + 083 InL* R =0.992
(9.26) (39.81)

Then by =1=b; =1-0.83=0.17.

HETEROSCEDASTICITY

9.4  (a) What is meant by heteroscedasticiny? (b) Draw a figure showing homoscedastic disturbances
and the various forms of heteroscedastic disturbances. (¢) Why is heteroscedasticity a problem?

(a) Heteroscedasticity refers to the case in which the variance of the error term is not constant for all values
of the independent variable; that is, E(Xju;) # 0. so E(u;)* # az. This violates the third assumption of
the OLS regression model (see Prob. 6.4). It occurs primarily in cross-sectional data.  For example, the
error variance associated with the expenditures of low-income families is usually smaller than for high-
income families because most of the expenditures of low-income families are on necessities, with little
room for discretion,

(h) Figure 9-1a shows homoscedastic (i.c., constant variance) disturbances, while Fig. 9-1b, ¢, and  shows
heteroscedastic disturbances. In Fig. 9-1b, o7 increases with X;. In Fig. 9-l¢, of decreases with X;. In
Fig. 9-1d, o7 first decreases and then increases as X; increases.  In economics, the heteroscedasticity
shown in Fig. 9-1b is the most common, so the discussion that follows refers to that.

¥ Panel A: y Panel B: ¥ Panel C: ¥ Panel D:
Homoscedasticity Heteroscedasticity Heteroscedasticity Heteroscedasticity
.
..

(¢) With heteroscedasticity, the OLS parameter estimates are still unbiased and consistent, but they are
inefficient (i.c., they have larger than minimum variances). Furthermore, the estimated variances of the
parameters are biased, leading to incorrect statistical tests for the parameters and biased confidence
intervals.
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0.5 (a) How 1s the presence of heteroscedasticity tested? (b)) How can heteroscedasticity be
corrected?

(a)

(b)

The presence of heteroscedasticity can be tested by arranging the data from small to large values of the
independent variable X; and then running two separate regressions, one [or small values of X; and one
for large values of X, omitting some (say, one-fifth) of the middle observations. Then the ratio of the
error sum of squares of the second regression to the error sum of squares of the first regression (i.c.,
ESS,/ESS,) is tested to see if it is significantly different from zero. The F distribution is used for this
test with (n —d — 2k)/2 degrees of freedom, where n is the total number of observations, d is the
number of omitted observations, and k is the number of estimated parameters. This is the Gold-
Sfeld-Quandt test for heteroscedasticity and is most appropriate [or large samples (i.e., for n = 30). Ifno
middle observations are omitted, the test is still correct, but it will have a reduced power to detect
heteroscedasticity.

If it is assumed (as often is the case) that varu; = CX7, where C is a nonzero constant, we can correct
for heteroscedasticity by dividing (i.e., weighting) every term of the regression by X; and then reesti-
mating the regression using the transformed variables. In the two-variable case, we have

Y, b U;
L=— b +— 0.4
X, X o+ X, (#:4)
The transformed error term is now homoscedastic:
. 1 y?
Varu; = var - =—varu;=C—==C

a"l‘ g i
Note that the original intercept has become a variable in Eq. (9.4), while the original slope parameter,
b|, is now the new intercept. However, care must be used to correctly interpret the results of the
transformed or weighted regression. Since in Eq. (9.4) the errors are homoscedastic, the OLS estimates
are not only unbiased and consistent, but also efficient. In the case of a multiple regression, each term
of the regression is divided (i.e., weighted) by the independent variable (say, X»;) that is thought to be
associated with the error term, so we have
Y,‘ bﬂ A)I' ;
= by—+b+—
Ay Xy 8 A T Xy

In Eq. (9.5), the original intercept, by, has become a variable, while 4, has become the new intercept
term. We can visually determine whether it is X5; or X7; that is related to the «; by plotting X5; and X|;
against the regression residuals, e;.

(9-5)

9.6 Table 9.7 gives the consumption expenditures C and disposable income Y; for 30 families.
(a) Regress C on Y, for the entire sample and test for heteroscedasticity. (b) Correct for
heteroscedasticity if it is found in part a.

Table 9.7 Consumption and Income Data for 30 Families (in U.S. Dollars)

Consumption Income
10,600 10,800 11,100 12,000
11,400 11,700 12,100 13,000
12,300 12,600 13,200 14,000
13,000 13,300 13,600 15,000
13,800 14,000 14,200 16,000
14,400 14,900 15,300 17,000
15,000 15,700 16,400 18,000
15,900 16,500 16,900 19,000
16,900 17,500 18,100 20,000
17,200 17,800 18,500 21,000
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Regressing C on Y, for the entire sample of 30 observations, we get

a

C=14800+ 0.788 Y, R =097
(3.29) (29.37)

To test for heteroscedasticity, we regress C on Yy for the first 12 and for last 12 observations, leaving
the middle 6 observations out, and we get

C = 846.7 +0.837Y, R* =091
(0.74) (9.91) ESS, = 1,069,000

C =2,306.7+0.747Y, R =0.71
(0.79)  (5.00) ESS, = 3,344,000

Since ESS,/ESS; = 3,344,000/1,069,000 = 3.13 exceeds F = 2.97 with (30 — 6 — 4)/2 = 10 degrees of
freedom in the numerator and denominator at the 5% level of significance (see App. 7), we accept the
hypothesis of heterascedasticity.

Assuming that the error variance is proportional to Y3, and then reestimating the regression using the
transformed variables of Table 9.8 to correct for heteroscedasticity, we get (in the last column of Table
9.8; 0.833333E-04 = 0.0000833333) the following:

¢ = 0.792 +1421.3 L

- . R =032
Yo (31.51) (3.59) Ya

Note that the marginal propensity to consume is now given by the intercept (i.e., 0.792) and is larger
than before the adjustment (i.e., 0.788). The statistical significance of both estimated parameters is
now even higher than before. The R® of the weighted regression (i.e., 0.32) is much lower but not
directly comparable with the R> of 0.97 before the transformation because the dependent variables are

different (Y /X as opposed to Y).

Table 9.9 gives the level of inventories I and sales S, both in millions of dollars, and borrowing
rates for 35 firms in an industry. It is expected that I will be directly related to S but inversely
related to R. (a) Regress 7 on S and R for the entire sample and test for heteroscedasticity.
(b) Correct for heteroscedasticity if it is found in part a, assuming that the error variance is
proportional to S°.

(a)

(b)

Regressing 7 on § and R for the entire sample of 35 firms, we get

I=—-6.174+ 020S — 025R R =098
(12.39) (-2.67)

To test for heteroscedasticity, we regress / on S and R for the first 14 and for the last 14 observations,
leaving the middle 7 observations out, and we get

[=-=223+40.165 -0.22R R =094
(1.90) (-0.81) ESS, = 0.908
=16.10+0.115 — 1.40R R* =096

(3.36) (-3.35) ESS, =5.114
Since ESS,/ESS, = 5.114/0.908 = 5.63 exceeds F); ;; = 2.82 at the 5% level of significance (see App.
7), we accept the hypothesis of heteroscedasticity.

Assuming that the error variance is proportional to $> and recstimating the regression using the
transformed variable to correct for heteroscedasticity, we get

= 0.21 - 8.45(1/5)— 0.18(R/S) R =0.93
(12.34) (-2.98)

La| =~
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Table 9.8 Consumption C and Disposable Income (Y,) in Original and

Transformed Form
Family C.$ Y, $ C/Yy. % 1/Y,, %

1 10,600 12,000 0.883333 0.833333E-04

2 10,800 12,000 0.900000 0.833333E-04

3 11,100 12,000 0.925000 0.833333E-04

4 11,400 13,000 0.876923 0.769231 E-04

5 11,700 13,000 0.900000 0.769231 E-04

6 12,100 13,000 0.930769 0.769231E-04

7 12,300 14,000 0.878571 0.714286E-04

8 12,600 14,000 0.900000 0.714286E-04

9 13,200 14,000 0.942857 0.714286E-04

10 13,000 15,000 0.866667 0.666667E-04

1 13,300 15,000 0.886667 0.66666TE-04

12 13,600 15,000 0.906667 0.666667E-04

13 13,800 16,000 0.862500 0.625000E-04

14 14,000 16,000 0.875000 0.625000E-04

15 14,200 16,000 0.887500 0.625000E-04

16 14,400 17,000 0.847059 0.588235E-04

17 14,900 17,000 0.876471 0.588235E-04

18 15,300 17,000 0.900000 0.588235E-04

19 15,000 18,000 0.833333 0.555556E-04

20 15,700 18,000 0.872222 0.555556E-04

21 16,400 18,000 0911111 0.555556E-04

22 15,900 19.000 0.836842 0.526316E-04

23 16,500 19,000 0.868421 0.526316E-04

24 16,900 19,000 0.889474 0.526316E-04

25 16,900 20,000 0.845000 0.500000E-04

26 17,500 20,000 0.875000 0.500000E-04

27 18,100 20,000 0.905000 0.500000E-04

28 17,200 21,000 0.819048 0.476190E-04

29 17,800 21,000 0.847619 0.476190E-04

30 18,500 21,000 0.880952 0.476190E-04
by = 0.21 is now the slope coeflicient associated with the variable S (instead of 0.16 belore the trans-
formation), while b, = —0.18 is the slope coeflicient associated with the variable R (instead of —0.23
before the lrnnsl‘omalion)‘. Both these slope coefficients remain highly significant before and after the

transformation, as does R*. The new constant is =8.45 instead of =6.17.
AUTOCORRELATION

9.8 (a) What is meant by autocorrelation? (b) Draw a figure showing positive and negative first-
order autocorrelation. (¢) Why is autocorrelation a problem?

(a)

Autocorrelation or serial correlation refers to the case in which the error term in one time period is
correlated with the error term in any other time period. If the error term in one time period is
correlated with the error term in the previous time period, there is firs-order autocorrelation. Most
of the applications in econometrics involve first rather than second- or higher-order autocorrelation.
Even though negative autocorrelation is possible, most economic time series exhibit paositive
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Table 9.9 Inventories, Sales, and Borrowing Rates for 35 Firms
Firm| |1 2 31 4 5| 6 7| 8| 9 10 10| 012 13| 4] 15 16| 17] 18
100 10 100 10 b0 nnp 120 120 120 12 12 13 13 13] 14| 14| 14 15
100 | 101 (103 [ 105|106 | 106 | 108 | 109 | 111 | D00 QL1203 ) 114 | 114 116 | 117 [ D18 | 120
170 170 170 16 16| 16| IS| IS| 14| 14| 14 4] 13 13) 12 12 12 1
Firm| 19] 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32| 33| 34| 35
I5) IS 15| 16| 16| 16 17 17| 17| 17| 18] 18] 19 19| 19| 20| 20
1220 123 [ 125 | 128 | 128 [ 1301 ) 133 [ 134 | I35 [ 136 ) 139 [ 143 | 147 | 151 | 157 | 163 | 171
1| 1 1nf 1wof 10 10 10 9 9 9 8 8 8 8 8 7 7

9.9

(h)

[

autocorrelation. Positive, first-order serial or autocorrelation means that E, , | > 0, thus violating the
fourth OLS assumption (see Prob. 6.4). This is common in time-series analysis.

Figure 9-2a shows positive and Fig. 9-2b shows negative first-order autocorrelation.  Whenever several
consecutive residuals have the same sign as in Fig. 9-2a, there is positive first-order autocorrelation.
However, whenever consecutive residuals change sign frequently, as in Fig. 9-2b, there is negative first-
order autocorrelation,

(¢)

Panel A: Positive autocorrelation e Panel B: Negative autocorrelation ey
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Fig. 9-2

With autocorrelation, the OLS parameter estimates are still unbiased and consistent, but the standard
errors of the estimated regression parameters are biased, leading to incorrect statistical tests and biased
confidence intervals, With positive first-order autocorrelation, the standard errors of the estimated
regression parameters are biased downward, thus exaggerating the precision and statistical significance
of the estimated regression parameters.

(¢) How is the presence of positive or negative first-order autocorrelation tested? (5) How can
autocorrelation be corrected?

(@) The presence of autocorrelation can be tested by calculating the Durbin-Watson statistic  given by Eq.

(9.1). This is routinely given by most computer programs such as SAS:

i(ﬁ - "r-!):

2.

=1

d 9.7)
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The calculated value of « ranges between 0 and 4, with no autocorrelation when « is in the neighbor-
hood of 2. The values of  indicating the presence or absence of positive or negative first-order
autocorrelation, and for which the test is inconclusive, are summarized in Fig. 9-3.  When the lagged
dependent appears as an explanatory variable in the regression, « is biased toward 2 and its power to
detect autocorrelation is hampered.

No autocorrelation =———————=|[nconclusive| = Autocorrelation
|

0 d‘_ d'_' 2 4_(’(- J_dL 4

+ Autocorrelation  |Inconclusive]

Fig. 9-3

(h) One method to correct positive first-order autocorrelation (the usual type) involves first regressing ¥ on
its value lagged one period, the explanatory variable of the model, and the explanatory variable lagged
one period:

Yi=b(l =p)+ pY oy + 5 X, = by pX, ) + 1, (9.2)

(The preceding equation is derived by multiplying each term of the original OLS model lagged one
period by p, subtracting the resulting expression from the original OLS model, transposing the term
pY,_, from the left to the right side of the equation, and defining v, = u, — pit,_,.) The second step
involves using the value of p found in Eq. (9.2) to transform all the vanables of the original OLS model,
as indicated in Eq. (9.3), and then estimating Eq. (9.3):

Y, - ﬁ Yo = bo(1 = p) + by(X, = pX,_y) + ¢, (9.3)

The error term, &,, in Eq. (9.3) is now free of autocorrelation.  This procedure, known as the Durbin
two-stage method, is an example of generalized least squares. To avoid losing the first observation in
the differencing process, ¥,4/1 — 4 and X,/1 — p* are used for the first transformed observation of ¥
and X, respectively. If the autocorrelation is due to the omission of an important variable, wrong
functional form, or improper model specification, these problems should be removed first, before
applying the preceding correction procedure for autocorrelation.

9.10 Table 9.10 gives the level of U.S. imports M and GDP (both secasonally adjusted in billions of
dollars) from 1980 to 1999. (a) Regress M on GDP and test for autocorrelation at the 5% level
of significance. () Correct for autocorrelation if it is found in part a.

(a) M, = -201.80+0.14 GDP, R =098
(—6.48) (29.49) d =0.54
Since d = 0.54 < d, = 1.20 at the 5% level of significance with n = 20 and k&’ = 1 (from App. 8), there

is evidence of positive first-order autocorrelation,

Table 9.10 Seasonally Adjusted U.S. Imports and GDP (Both in Billions of Dollars) from 1980 to 1999

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

M 2092 | 3194 | 2949 | 3580 | 4164 | 4389 | 467.7 | 5367 | 5735 | 599.6
GDP | 2918.8 | 3203.1 | 3315.6 | 3688.8 | 4033.5 | 4319.3 | 4537.5 | 4891.6 | 5258.3 | 5588.0

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

M 649.2 | 639.0 | 687.1 | 7449 | 859.6 | 909.3 | 992.8 | 1087.0 | 1147.3 | 1330.1

GDP | 5847.3 | 6080.7 | 6469.8 | 6795.5 | 7217.7 | 7529.3 | 7981.4 | 8478.6 | 8974.9 | 9559.7

Source: St. Louis Federal Reserve (Burcau of Economic Analysis).
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(h) To correct for autocorrelation, first the following regression is run:

M, =-103.21 + 0.82 M,_; + 0.36 GDP, —-0.33 GDP,_, R =0.98
(4.72) (4.68) (-4.23)

Then, using 5 = 0.82 (the coefficient on M,_, in the preceding regression), we transform the original
variables as indicated in Eq. (9.3). The original variables (M and GDP) and the transformed variables
(M* and GDP") are given in Table 9.11.

Miggo = 299.2v 1 — 0.82* = 171.251 and GDPjggy = 2918.8V1 = 0.82* = 1670.615

Table 9.11 U.S. Imports and GDP in Original and Transformed Form

Year M GDP M* GDpP*

1980 299.2 2918.8 171.250 1670.610
1981 3194 3203.1 74.056 809.684
1982 2949 33156 32992 689.058
1983 358.0 3688.8 116.182 970.008
1984 416.4 4033.5 122.840 1008.684
1985 4389 4319.3 97.452 1011.830
1986 467.7 4537.5 107.802 095.674
1987 536.7 4891.6 153.186 1170.850
1988 5735 5258.3 133.406 1247.188
1989 599.6 5588.0 129.330 1276.194
1990 649.2 58473 157.528 1265.140
1991 639.0 6080.7 106.656 1285.914
1992 687.1 6469.8 163.120 1483.626
1993 7449 6795.5 181.478 1490.264
1994 859.6 7217.7 248.782 1645.390
1995 909.3 7529.3 204.428 1610.786
1996 992.8 7981.4 247.174 1807.374
1997 1087.0 8478.6 272.904 1933.852
1998 1147.3 8974.9 255.960 2022.448
1999 1330.1 9559.7 389.314 2200.282

Regressing M* on GDP*, we get

M; =579.53+4.75 GDP;  R* =088
(7.79)  (11.91) d =169

Since now d = 1.69 > d;; = 1.41 at the 5% level of significance with n =20 and k' = 1 (from App. 8),
there is no evidence of autocorrelation. Note that though GDP; remains highly significant, its ¢ value
is lower than the 7 value of GDP,. In addition, R* = 0.88 now, as opposed to R* = 0.98 before the
correction for autocorrelation.

9.11 Table 9.12 gives gross private domestic investment (GPDI) and GDP, both in seasonally adjusted
billions of 1996 dollars, and the GDP deflator price index P for the United States from 1980 to
1999. (a) Regress GPDI on GDP and P and test for autocorrelation at the 5% level of
significance. (b) Correct for autocorrelation if it is found in part a.
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Table 9.12 U.S. GPDI, GDP (Both in Seasonally Adjusted Billions ol 1996 Dollars), and
GDP Deflator Price Index, 1982-1999

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990

GPDI | 571.1 762.2 | 8769 | 887.8 | 838.2 [ 9293 | 916.7 | 9229 | 849.6

GDP | 4915.6 | 5286.8 | 5583.1 | 5806.0 | 5969.5 | 6234.4 | 6465.2 | 6633.5 | 6664.2

P 67.44 69.75| 7224 7440 76.05| 7846 81.36| 84.24| 87.76

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

GPDI | 864.2 | 941.6 |1015.6 | 1150.5 | 1152.4 [1283.7 [1438.5 |1609.9 |1751.6

GDP |6720.9 [6990.6 |7168.7 |7461.1 |7621.9 |7931.3 |8272.9 |8654.5 |9084.1
P 9047 9256 94.79| 96.74| 98.79| 100.63| 10249 | 103.69| 105.31

Source: St. Louis Federal Reserve (Bureau of Economic Analysis),

(a) GPDI, = —199.71 +0.56 GDP, —29.70 P, R* =0.97
(10.61) (=6.07) d = 0.56

Since d = 0.56 < d; = 1.05 at the 5% level of significance with n = 18 and k' = 2 (from App. 8), there

is evidence of autocorrelation.

(b) To correct for autocorrelation, first, the following regression is run:

GPDI, = —291.79 + 0.74 GPDI,_, + 0.76 GDP, — 0.73 GDP,_; + 1.91P,+ 1.40P,_,
(2.99) (7.12) (-4.28) (0.06)  (0.06)

R =099
Then, using p = 0.74 (the coefficient on GPDI,_, in the preceding regression), we transform the original

variables as indicated in Eq. (9.3). The original and the transformed variables (the latter indicated by
an asterisk) are given in Table 9.13.

GPDIjgss = 5711V 1 — 0.74> = 384.126
GDPjgsa = 4915.6v 1 — 0.74* = 3306.266

Ploga = 67441 — 0.74° = 45.361

Regressing GPDI; on GDP; and P;, we get

GPDI! =31.05+0.52 GDP; —30.02P; R*=0.88
(9.81) (—6.54) d=177

Since d = 1.77 > dy; = 1.53 at the 5% level of significance with n = 18 and &’ = 2 (from App. 8), there
is no evidence of autocorrelation. Both variables remain highly significant, and R’ falls.

9.12 Table 9.14 gives personal consumption expenditures C and disposable personal income Y, both
in billions of dollars, for the United States from 1982 to 1999. (a) Regress C, on Y, and test for
autocorrelation. (b) Correct for autocorrelation if it is found in part a.

-

(a) C,=-29346+097Y, R =099
(—6.58) (99.65) d=0.58

Since d = 0.58, there is evidence of autocorrelation at both the 5 and 1% levels of significance,
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Table 9.13 GPDI, GDP, and P in Original and Transformed Form

Year | GPDI GDP P GPDI* GDP* P*

1980 662.2 4936.6 59.16 384.126 3306.266 45.3610
1981 708.8 4997.1 64.10 218,772 1344.016 20.3216
1982 571.1 4915.6 67.44 46.588 1217.746 20,0060
1983 762.2 5286.8 69.75 339.586 1649.256 19.8444
1984 8769 5583.1 72.24 312.872 1670.868 20.6250
1985 887.8 5806.0 74.40 238.894 1674.506 20.9424
1986 838.2 5969.5 76.05 181.228 1673.060 20.9940
1987 929.3 6234.4 78.46 309.032 1816.970 22,1830
1988 916.7 6465.2 81.36 229.018 1851.744 23.2996
1989 9229 6633.5 84.24 244,542 1849.252 24,0336
1990 849.6 6664.2 87.76 166.654 1755.410 25.4224
1991 864.2 6720.9 90.47 235.496 1789.392 25.5276
1992 941.6 6990.6 92.56 302.092 2017.134 25.6122
1993 | 1015.6 7168.7 94.79 318816 1995.656 26.2956
1994 | 1150.5 7461.1 96.74 398.956 2156.262 26,5954
1995 | 11524 76219 98.79 301.030 2100.686 27.2024
1996 | 1283.7 7931.3 100.63 430.924 2291.094 27.5254
1997 | 1438.5 82729 102.49 488.562 2403.738 28.0238
1998 | 16099 8654.5 103.69 545410 2532.554 27.8474
1999 | 1751.6 9084.1 105.31 560.274 2679.770 28.5794

Table 9.14 U.S. Consumption Expenditures and Disposable Income (in Billions of Dollars), 1982-1999

Year | 1982 1983 1984 1985 1986 1987 1988 1989 1990

c 2079.3 | 22864 | 24984 | 2712.6 | 28952 | 3105.3 | 3356.6 | 3596.7 | 38315

Y 2406.8 | 2586.0 | 2887.6 | 3086.5 | 3262.5 | 3459.5 | 37524 | 4016.3 | 4293.6

Year | 1991 1992 1993 1994 1995 1996 1997 1998 1999
c 3971.2 | 4209.7 | 44547 | 47164 | 4969.0 | 5237.5 | 55244 | 5848.6 | 62549
Y 44748 | 47546 | 49353 | 51654 | 5422.6 | 5677.7 | 39828 [ 6286.2 | 6639.2

Source: Economic Report of the President.

(h) To correct for autocorrelation, first the following regression is run:

C,=93.90+1.23C,_; + 040 Y, - 0.60 ¥,_, R* =099
(5.18) (1.79) (-3.08)

Since p 2 | (the coefficient on C,_; in the preceding regression), we rerun the regression on the first
difTerences of the original variables (i.e., AC, and AY,), omitling the intercept, and gel

AC,=097AY, R =098
(25.88) d =175
The new value of d indicates no evidence of autocorrelation at either the 1 or at the 5% level of

significance. (Nore: R* is not well defined in regression with no intercept and therefore is not compar-
able with the previous regressions. For a more in-depth study of procedure when p = 1, see Sec. 11.3.)
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ERRORS IN VARIABLES

9.13

9.14

(a) What is meant by errors in variables? (b) What problems do errors in variables create?
() Is there any test to detect the presence of errors in variables? (d) How can the problems
created by the existence of errors in variables be corrected?

(a) Errors in variables refer to the case in which the variables in the regression model include measurement
errors. These are probably very common in view of the way most data are collected and elaborated,

(b)) Measurement errors in the dependent variable are incorporated into the disturbance term leaving
unbiased and consistent (although inefficient or larger than minimum variance) OLS parameter
estimates. However, with measurement errors in the explanatory variables, the fifth of the OLS
assumption of independence of the explanatory variables and error term is violated (see Prob. 6.4),
leading to biased and inconsistent OLS parameter estimates. In a simple regression, b, is biased
downward, while b, is biased upward.

(¢) There is no formal test to detect the presence of errors in variables. Only economic theory and

knowledge of how the data were gathered can sometimes give some indication of the seriousness off
the problem.

(d) One method of obtaining consisient (but still biased and ineflicient) OLS parameter estimates is to replace
the explanatory variable subject to measurement errors with another variable that is highly correlated
with the explanatory variable in question but which is independent of the error term. In the real world, it
might be difficult to find such an instrumental variable, and one could never be sure that it would be
independent of the error term.  The most popular instrumental variable is the lagged value of the
explanatory variable in question.  Measurement errors in the explanatory variable only also can be
corrected by inverse least squares,  This involves regressing X' on Y.  Then, b, = =by/b| and
b, = 1 /b, where by and b, are consistent estimates of the intercept and slope parameter of the regression
of Y,on X,.

Table 9.15 gives inventories Y, actual sales X, and hypothetical values of X" that include mea-
surement errors, X ', all in billions of dollars, in U.S. manufacturing from 198310 1998. Y and X
are assumed to be free of measurement errors. (a) Regress ¥, on X,. (b) Regress Y, on X, (on
the assumption that X is not available). What type of bias results in the estimates in using X’
instead of X? (¢) Use instrumental variables to obtain consistent parameter estimates, on the
assumption that X, is correlated with 1,, How do these parameter estimates compare with those
obtained in part b?

(a) Y, =169.69+ 090 X, R*=095
(11.66) (16.46)

Table 9.15 Inventory and Sales (Both in Billions of Dollars) in U.S. Manufacturing, 1983-1998

Year 1983 1984 1985 1986 1987 1988 1989 1990
Y 312 340 335 323 338 369 391 405
X 172 191 194 195 206 225 237 243
X' 176 195 199 200 212 232 245 252
Year 1991 1992 1993 1994 1995 1996 1997 1998
Y 391 383 384 405 431 437 456 467
X 240 250 261 279 300 310 327 338
X' 251 263 276 296 320 333 352 366

Source: Economic Report of the President.
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(h) Regressing Y, on X, (if X, is not available), we get

»

¥,= 18250+ 0.78 X, R =094
(13.38) (15.23)

Note that &] < by; furthermore, b, falls outside the 95% confidence interval of h| (0.67 to 0.89).
(¢) Using X, as an instrumental variable for X', (if X, is believed 1o be correlated with u,), we get

Y, = 18790+ 080 X, R'=092
(11.44) (12.57)

The coefficient on X, is closer to the true one (5, falls in the 95% confidence interval of 0.66 to 0.94),
and is consistent. Of course, in the real world it is rarely known what error of measurement might be
present (otherwise, the errors could be corrected before running the regression). It is also difficult or
impossible to establish whether X} is correlated with w,.

9.15 Using the data in Table 9.15, (a) regress X, on Y, in order to overcome crrors in measuring X/,.

(b) How do these results compare with those in Prob. 9.14(c)?

(a) Since only X, (i.e., the explanatory variable) is subject to measurement errors, inverse least squares is
another method for obtaining consistent parameter estimates. Regressing X/ on Y,, we get

X! ==206.10+1.21Y, R =094

(-6.68) (15.23)
- by (-206.10) - 1 1
b“_-le'__T_ 17033 ill'ld b[—b.—;—m—ﬂ.s:;

where 50 and 5, are consistent (but still biased) estimates of the intercept and slope parameters of the
regression of ¥, on X,.

(h) Using inverse least squares gives better results in this case compared to the instrumental-variable
method [see Prob. 9.14(¢c)).  With instrumental variables, both the estimated intercept and slope
parameter are farther from the true values. However, the results may very well differ in other
cases. In any event, in the real world we seldom know what types of errors are present, what type
of adjustment is appropriate, and how close the adjusted parameters are to the true parameter values.

Supplementary Problems

MULTICOLLINEARITY

9.16

9.17

Why can the following consumption function not be estimated?
Co=by+bYy+bYy 1+ AY, +u,

where AYy, = Yy — Yyor.
Ans.  Because there is a perfect multicollinearity between A Yy, on one hand and Y, and Y, _, on the other,
As a result, there are only three independent normal equations and four coeflicients to estimate, and so no
unique solution is possible.

Table 9.16 gives hypothetical data on consumption expenditures C, disposable income Y, and wealth W, all
in thousands of dollars, for a sample of 15 familics. (a) Regress C on Y, and W und find R and ry,w.
(h) Regress Con Yyonly., (¢) Regress Con W only, (d) What can you conclude [rom the preceding with
regard to multicollinearity?



