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Course Description:
Functions, Limits and continuity, Differentiation, Applications of derivatives, Integration, Inverse
functions. Applications of the Integral

Recommended Textbook(s):
Calculus, Early Transcendental By James Stewart, 6th Edition, 2008, Brooks/Cole

Prerequisites:
None

Course Topics:

1. Functions and models: four ways to represent a function , mathematical
models: a catalogue of essential functions , new functions from old functions ,
exponential functions, inverse functions and logarithms

2. Limits: the tangent and velocity problems. The limit of a function, calculating
limits using the limit laws. Continuity, limits at infinity, horizontal asymptote.
Infinite limits, vertical asymptotes. derivatives and rates of change

3. Differentiation rules: Differentiation of Polynomials. The Product and
Quotient Rules. Derivatives of Trigonometric Functions. The Chain Rule,
Implicit Differentiation. Related Rates, Indeterminate forms and I’hospital’s
rule.

7. Applications of differentiation: maximum and minimum values. The mean
value theorem. How derivatives affect the shape of a graph. Summary of curve
sketching. Optimization problems. Antiderivatives.

10.Integrals: the definite integral. The fundamental theorem of calculus. The
indefinite integral and net change theorem. The substitution rule.

11. Applications of integrals: areas between curves. Volumes. VVolumes by
cylindrical shells. Average value of a function.

12.Exponential and logarithmic functions. Derivative and integrals involving
logarithmic functions. Inverse functions. Derivative and integrals involving
exponential functions. Derivative and integrals involving inverse trig functions.
Hyperbolic functions.
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1 Functions

Examples of functions

A. The most useful representation of the area of a circle as a function of its radius
is probably the algebraic formula A= 17r2

B. The vertical acceleration of the ground as measured by a seismograph during
an earthquake is a function of the elapsed time. Figure below shows a graph
generated by seismic activity during the Northridge earthquake that shook Los
Angeles in 1994. For a given value of the graph provides a corresponding value
of a.

a
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So, function is y = f(x), expressing y as a dependent variable on f and x is an
independent variable.
For example f(x) = 2x-1

If x=1then 2*1-1=1
X=-1then 2 *-1-1=-3

And so on

X X
If an absolute value like f(x) = IxI then x=
-x x<0
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Note:

I-al = lal

labl = lal Ibl

la/bl = lal/Ibl but b #0
la+bl = lal+Ibl

2. Domain and Range

We usually consider functions for which the sets D and E are sets of real numbers.
The set D is called the domain of the function. The number f(x) is the value of f at x
and is read “f of x” The range of f is the set of all possible values of f(x) as varies
throughout the domain.

Then domains and ranges of many functions are intervals of real numbers.

X ——> f — fix)
(input) (output)
— ___-'\-\_\_\_-H- "'-'.-.-- _"‘-\‘..
x 7% 5\
o s |
| '
‘\-\\.._\______ L I'_-x(:.’. //;
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Example5: Find the domain and range of the following functions:

(@ f(x)=2x-1
(b) f(x)=x
(c) f(x)=tanx

(d) y=+x
X—12

g)y=—— <
©y x> —5X+6

Solution

(@ f(x)=2x-1
Domain: x=R —w<x<w

Range f(x) = R R: denotes as all real number

(b) f(X):XZ

Domain; X=R —w<Xx<w

Range f(x) = R

(c) f(x)=tanx

Domain: x=R excluding =+
d) f(x)=+x

Domain 0<x andRange 0<y
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x—12
©y=—F—"—
V=2 ox+6

The denominator not equal to zero
x? —5x+6 =0

(x-3)(x-2) then domain all but x#£3 and x#2

2. Sketch of functions

The points in the plane whose (x,y) are the input and output pairs of a function
make up the graph of the function.

Definition:
Even function: if f(x) = f(-x)
Odd function: if f(x) = -f(-x)

Example6: sketch the function y= x+2

Solution:
Y
X101 2]... 1] -2 4
y | 23] 4 1]0 3
o3 X
4 -2 4
Example7: sketch the power function y= x2
Solution: x [0 1][2]... 1] -2
y |0]1] 4 1| 4
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N

Notes: if n is odd then symmetric about origin and pass through (1,1) and (-1,-1)

if n is even then symmetric about y axis and pass through (1,1) and (-1,1)
if the power is negative then y=1/x"

like y= 1/x3, 1/x .....

1|
0.5+ \

Graph of y=1/x®

Example8: Find the domain and range then sketch the function y=+/4—x

Solution

Domain: 4-x=20 then x<4

Range y=0
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2. Polynomials
The general form is
Kn X" + Kn1 X" + Kn2 X™2 + ... + K1 x + Ko
Ex: x3+5x2+3
XO-x34+x05 etc.
The graph is
¥
\ oy _
\ 27
.
!
A B
. / 1 X
1] x I |
1 Il| '|II

@y=x’—x+1 (b)y=x*—3x%+x

(c) y=3x*—25x% + 60x
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Example8: sketch the function f,,=(x-2)(x+1)

Solution

foy=y=X*+x-2x-2

y=x>—x-2 y=ax’ +bx+c

The vertex =x=-b/l2a , x=-(-1)/2*1=%
y =(1/2)?-1/2 -2 = -9/4

vertex (1/2, -9/4)
points of intercept

atx=0y=-2
aty=0 0= (x-2)(x-1)

x=2 (2,0)
x=-1 (-1,0)

2. Trigonometric functions

Sine sinx = a/c
Cosine cosx = b/c
Tangent tanx = a/b = sinx/cosx

Cotangent cotx = b/a = cosx/sinx
Secant secx = c/a = 1/cosx
Cosecant csecx = c/a = 1/sinx

N

(=]

N

IS

Hypotenuse ¢ Opposite a

Adjacent b



University of Anbar
College of Engineering
Department(s): Civil Eng.

Identities

Reciprocal Identities

Semester | (2019-2020)

Trigonometric Identities — part 1

Half Angle Identities

Calculus |

Calculus | Group
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www.GIMathS.Com

Double Angle Identities

Pythagoras Identities

sin?0 + cos?8 =1

1 _ sin(26) = 2 sin@ cos 6
sinf=— | cscf=—— sin(g)= 1—cos@ (26)
2 - cos(28) = cos20 — sin%0
=2cos%8 —1
cosf=—— | secl=—vop || o e - 1+cosf €os
sec cos 2/ + 2 =1 - 2s5in%@
] 1—cos@
2tan 8
= =_ tan|—| =4+ |[——— _
tan 8 cot 8 cot® tan 6 | (2) _,’ 1+cos@ | tan(26) = 1_ tanZd

+B

a—p
(%5

Sum to Product Identities Product to Sum Identities

a
sina + sinf = 2sin (T)ca

sinasinff = ;[cos(a —pB)—cos(a+ )

1+ tan’@ = sec?0

1+ cot’8 = csc?8

Even/Odd Identities

sin(—@#) = —sin@

cos(—0) = cos @

tan(—8@) = —tan @

sine —sinf§ = 2cos (

)
()

cosacos f§ =% [cos(a — B) + cos(a + )

csc(—8) = —csc B

a
cosa+cosﬁ:2(:os( 2

+ ﬁ)COS

=)

sinacos B

;[sin(a + B) +sin(a — §)

sec(—0) = sec @

+8

a
Qs a—cosff = —2sin (T

e

cosasinf = % [sin(a + B) — sin(a — )

cot(—8) = —cot@

J

Graphs:

y
— - 14 3m
N i V. V.
—r l“U o M# 3w SKI
- 2 2
(a) f(x)=sinx
VA

N T T N,
U I U "R :
- 2 2 2

(b) g(x)=rcosx
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3. Exponential functions
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y=tlanx

The exponential functions are the functions of the form f(x) = a*, where the base a

iS a positive constant.

= _———’/ 1 -
0 1 X
(’a) y= 2 X

Y

If we choose the base a so that the slope of the
tangent line tangent line to the y = ax at (0,1) is
exactly. In fact, there is such a number and it is
denoted by the letter e. e =2.71828

10
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llustrative example: Graph the function y = gle'x — 1 and state the domain and range.
Solution ~ We start with the graph of y = ¢ from Figure below. and reflect about
the y-axis to get the graph of y = ¢ " in . Figure (b). (Notice that the graph crosses the
y-axis with a slope of —1). Then we compress the graph vertically by a factor of 2 to

obtain the graph of y = %e" in Figure (c). . Finally, we shift the graph downward one
The domain is Rand the range is (—1, o).

unit to get the desired graph in Figure (d).

(a)y=e' (byy=e™

4. Power functions
A function of the form f(x) = x® , where is a constant, is called a power function. We

consider several cases.
y=x y=1* y=1t F=I
! ¥=1I X ¥ ! | \ ¥ | ¥ |
I'-,\I Il | I. .I |
. ot/ i+ Lo T
} x‘\ﬁ- -"'/l -‘/Irl . - } -"jlu
o Pt 1] I __/"- il i I 0 I .'/- 7] i T
IIII III
{ |
! i

11
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(B) fix)=Hj1 (b fix)="3x

5. Logarithmic functions

The logarithmic function f(x) = loga , where a is a positive constant, are the inverse
function of the exponential functions. In each case the domain is(0, <) and the range
is (-=, ) and the function increases slowly when x>1.

Example9: Classify the following functions as one of the types of functions that we
have discussed.

(a) fx) =5 (b) g(x) = x°

1 +x
(c) hix) = ﬁ (d) ut)y=1—1+ 5t

12
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Solution

(a) f(x) = 5% is an exponential function. (The x is the exponent.)
(b) g(x) = x’isa power function. (The x is the base.) We could also consider it to be a
polynomial of degree 5.

1 + x

—\/—‘ is an algebraic function.

(¢) hix) = —e

(d) u(r) =1 — 1 + 5t*is a polynomial of degree 4.

NATURAL LOGARITHMS

The logarithm with base is called the natural logarithm and has a special notation:

log x =1Inx

Ine=1

A X | y=Inx
0 0
1 0
2 0.693
3 1.098
0 4 1.386
5 1.609
-1 oo
0.9 -0.105
0.5 -0.693
0.2 -1.609
0.1 -2.302

13
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6. Algebra of functions

Let fis a fynction of x then we get f(x) and g is a function of x also we get g(x)

Df is the domain of f(x)

Dg is the domain of g(x) i (imput) ——
Then: g

l
f+g = f(x) + g(x) and Df N Dg g(x) fog
f-g =104 - g(x :
f.g=1(X) . g(x) s
and the domain is as same before ﬂglm) (outputy ——

if f/g then Df N Dg but g(x) # 0
if g/f then Dg N Df but f(x) # 0

and Dfog = {x: x € Dg, g(x) € Df}
where

fog(x) = f(g(x)) also called the composition of f and g

Examplel0: Find fog and gof if f,)=+v1-x and g, =+v5+X

Solution

(fog)x= f(g(x)) = f(~/5+x) = y1-/5+x

(1-x) 2 0 then x <1 Df: x<1

5+x = 0 then x =2 -5 Dg: x=-5

D fog = {x: x 2 -5, /5+x <1} ={x: -5 < x <-4}

14
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Example 11: Given F(x) = cos’(x + 9), find functions f.g.and h such that F = fege h.

Solution Since F(x) = [cos(x + 9)]*, the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

hx)y=x+9 glx) = cosx flx) = x?
Then

(fogeh)(x)=flgh(x)) = flg(x +9)) = flcos(x + 9))
= [cos(x + 9)]* = F(x) |

Example 12: If f,, =J/x and gy =v1-x
Find:
f+g, f-g, g-f, fog, /g, g/f then graph fog and also f+g.

Solution

fix) =Jx domain x =0
dx) =v1-x domain x <1

f+g = (f+g)x = V/x +/1—x domain 0 <x <1 or [0,1]
f-g = Vx-+1-x domain 0 <x <1
g-f= V1-x-/x domain 0=<x<1

fog = f(X) g(x) =f(g(x)) =f(V1-x) = yJJ1-x=3%Y1-x domain (-, 1] (why?)

flg = f0)/g0) = | —— domain (-, 1]
1-x
g/f:g(x)/f(x):,/l‘TX domain (0, 1]

15
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Inverse functions
A function that undoes, or inverts, the effect of a function f is called the inverse of f.
Many common functions, though not all, are paired with an inverse. In this section we

present the natural logarithmic function y = In x as the inverse of the exponential

function y = €%, and we also give examples of several inverse trigopnometric functions.

DEFINITION Suppose that f is a one-to-one function on a domain D with range
R. The inverse function f ! is defined by

FB)=a if fla) = b.
The domain of f~! is R and the range of £~ is .

Example 63:

Suppose a one-to-one function ¥y = f(x) is given by a table of values

fooo | 3] 45| 7105 ] 15| 205 | 27 | 345 |

A table for the values of x = f7'(v) can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for f:

¥ |3|4.5|?|]ﬂ.5|15|2ﬂ.5|2?|34.5|
fupl v 2 (3] 4 [ s o6 | 7] 8 | O

Note:

Only a one-to-one function can have an inverse

Q: What is the one to one function ?

17
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whenever x; # x, in D,

DEFINITION A function f(x) is one-to-one on a domain D if f{x;) & flx,)

Note
domain of f~' = range of f
range of f~! = domain of f
Example:

two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.

fa) f(x) = \/x is one-to-one on any domain of nonnegative numbers because Vx; #

V{I_g whenever x; # x,.

(b) g(x) = sin x is not one-to-one on the interval [ 0, 7 | because sin (7 /6) = sin (57 /6).
In fact, for each element x, in the subinterval [0, 7 /2) there is a corresponding ele-
ment x; in the subinterval (7 /2, 7] satisfying sin x; = sin x;, so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on [0, 7 /2], however, because it is an increasing function on [0, w/2] giving

distinct outputs for distinct inputs.

The graph of a one-to-one function v = f(x) can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one

¥ ¥

* *

/] = 0 > X

(a) One-to-one: Graph meets each
honzontal line at most once.

H"“"-\-..
-

k
Same y-value

NA 05| L—

> r\‘;-_r
-1 0] 1 T Sz N
6 f./

¥ =sinx

(b} Mot one-to-one: Graph meets one or
more honzontal lines more than once.

18
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How to Find the Inverse Function of a One-to-One Function f
STEP1 Write y = f(x).
STEP2 Solve this equation for x in terms of v (if possible).

STEP3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = f~'(x).

Example 64:

Find the inverse function of f(x) = x* + 2.
SOLUTION According to (3) we first write
yv=x+2

Then we solve this equation for x:

x=y-12

x=3y-—12
Finally, we interchange x and y:

y==2

Therefore the inverse function is £~ '(x) = ¥/x — 2.

Example 65:

Sketch the graphs of f(x) = +—1 — x and its inverse function using the

same coordinate axes.

SOLUTION First we sketch the curve y = +/ —1 — x (the top half of the parabola

v?= —1 — x,orx = —y? — 1) and then we reflect about the line ¥ = x to get the
graph of f~'. (See Figure 10.) As a check on our graph, notice that the expression for
f'is f~'(x) = —x* — 1, x = 0. So the graph of f~'is the right half of the parabola

v = —x* — 1 and this seems reasonable from Figure y
*
y=fix

- ¥

0.-1)

y=f"x)

19
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Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in
Chapter 2. These functions are not one-to-one (their values repeat periodically).

Domain restrictions that make the trigonometric functions one-to-one

v ¥ ¥ tanx
y 3 T I
sin X :
T 1k I COs X I
2
; 0 J_ » X \J Ly, 'TII' 5 T|]' » X
—AF 2 AN E! ?
I
[
¥y =sinx ¥ = COsX y=tfanx
Domain: [—a /2, 7 /2] Domain: [0, 7 | Domain: (—ar /2, @ /2)
Range: [—1,1] Range: [—1,1] Range: (—oc, o)
¥ Y secx ¥ cscx
] | [ | l I
cot x | I I I
i | | !
: ! | | 1
| . l I
0 7 s 0 T w T 0 T
TN - 12
| | | [
| i : :
' |
| | | I
v =cotx ¥ = Secx Y =CSCX
Domain: (0, ) Domain: [0,7/2) U (w/2, 7]  Domain: [—m/2,0) U (0, 7/2]
Range: (—oo, o) Range: (—oo,—1] U [ 1, 00) Range: (—oo,—1] U [ 1, 00)

Since these restricted functions are now one-to-one, they have inverses, which we
denote by

¥y =sin 'x or ¥y = arcsin x
y=cos'x or ¥V = arccos x
y=tan'x or vy = arctan x
y=cot'x or Vv = arccot x
y=sec!'x or y = arcsec x
y=csc'x  or Yy = arccsc x
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Graph of inverse trig functions

Domain: -1 =x=1
T

Range: —% =y=3
¥
A
LN
2 .
¥ = sin~
| L
1 r "
N
2

(a)

Domain: —l=x=1
Range: O=y=gq
¥
&
-——
}‘=ms"x
L
2
—i——'—:-x
(b)

Domain: r=-lorx=1

Domain: —== < 1 < =
ToyxX

Range: -5 5
¥
"
_______ s
2 y = tan~lx
| | | | u
i — Tz F
_m
_______ al
(c)

Domain; —= < x << =™
Range: O=<y=mw

Domain: x= —lorx=1
Range: l]E_',ISw,yi% Range: —%E}S%,yiﬂ
X Y 1
T _ . . o ___ T W
1" 7 y = cac! r
- y = seclx y =cot”lx
_______ 1 I [ | . |
—2 -1 1 2 2
L I - 1 F L L 1 [
I > X 2 -2 -1 1 2 *
(d} (e} (f)
Notes:

To convert from degree to radian

and

I radian = 130 (=57.3) degrees

o radians = 180°

or

1 degree = 130

{=0.017) radians.

o
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TABLE 1.1 Angles measured in degrees and radians
Degrees —180 —135 —90 —45 0 30 45 60 90 120 135 150 180 270 360
g e | D3 —@m @ m @m = & Im 3w = 3m
8 (radians) w 3 2 3 0 3 3 3 3 3 3 3 o 2 2
TABLE 1.2 Values of sin 8, cos #, and tan # for selected values of 8
Degrees —180 —135 -9 —45 0 30 45 60 90 120 135 150 180 270 360
. -3 - -= w W T @ 2w 3w 5w In
# (radians) —m 4 2 3 0 3 Y 3 2 3 Y r T 5 2o
. -2 -V2 1 V2 V3 Vioov2
sin @ 0 - 1 =5 °® 53 v 7! 7T 7T 2 010
] -2 V2 V3 V2o 1 V2 -\V3
cos @ = 0 T 5 5 3 0 5 = — -t o1
tan @ 0 1 1 GVTJ5 1 V3 V3 -l %ﬁ 0 0
The *Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the
arc length equation s = rfl becomes
s = #, so central angles and the arcs
they subtend have the same measure.
If x = sin y, then, in addition to being
the angle whose sine is x, v is also the
length of arc on the unit circle that
subtends an angle whose sine is x. So
we call y “the arc whose sine is x.”
y
A
2+yri=1 Arc whose sine is x
Arc whose
Angle whose cosine is x
sine is x_|
] :;_x
0] \ X 1

5X

Angle whose
cosine i

22
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Example 66:
Evaluate (a) sin’! (?) and (b) CDS_l(— %)

Solution
(a) We see that

Sil‘l_l ﬁ — ol

2 3

because sin(w/3) = V/3/2 and 7 /3 belongs to the range [—m /2, /2] of the arc-

sine function. See Figure 1.68a.

{b) We have

because cos(27/3) = —1/2 and 27 /3 belongs to the range [0, 7 | of the arccosine

We can create the following table of common values for the arcsine and arccosine
functions

X sin'x cos 'x

V3/2 7/3 7/6
V2/2 m/4 /4
1/2 /6 /3
-1/2 —m/6 2w /3
-V2/2 — /4 37 /4
-V/3/2 —7/3 57/6
y ¥

Example 67:
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Evaluate (a) sin_l{%) and (b) tan(arcsin %)
SOLUTION

(a) We have -

sn ) =T

because sin(7/6) = ]jand /6 lies between —7r/2 and 7/ 2.

(b) Let 6 = arcsin %, sosin f = % Then we can draw a right triangle with angle 8 as
in Figure  and deduce from the Pythagorean Theorem that the third side has length

v/9 — 1 = 2/2. This enables us to read from the triangle that
tan[arcsin '—) =tan f = L
3 22
The cancellation equations for inverse functions become, in this case,

P m m
sin”'(sin x) = x fnr—?-{,xﬁzg

sin(sin"'x) =x for—-1=x<=1

The inverse sine function, sin™', has domain [—1, 1] and range [—/2, 7/2], and
its graph, shown in Figure 20, is obtained from that of the restricted sine function -
by reflection about the line y = x.

ra|E
l
—.

1Y
11
%
LY
11
%
%
=1
—
1
tal g

y = sin~'x = arcsin x

Example 68:
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Simplify the expression cos(tan™'x).

SOLUTION1 Lety =tan 'x. Then tan y = x and —7/2 < y < 7/2. We want to find
cos y but, since tan y is known, it is easier to find sec y first:

sec’y =1+ tan’y =1 + x*
secy = 4/1 + x? (since secy = Ofor —/2 < v < w/2)

Thus cos(tan™'x) = cos y = 1 = ]

secy A1 +x7

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it 1s perhaps
easier to use a diagram. If y = tan™'x, then tan y = x, and we can read from Figure 24

{which illustrates the case v = 0) that

cos(tan~'x) = cos v = ]——
i J1 + x2 u
The inverse tangent function, tan~' = arctan, has domain R and range (—w/2, w/2).

Its graph 15 shown in Figure .

¥ = cos”'x = arccos x

rals
=

|
Sl |
=

y=tanx, —F<x<7F
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=Y

Identities of inverse trig functions

sin"'x + cos”!'x = 7w /2.

and so on ..
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2 Limits & Continuity

In this chapter, we’ll define how limit of function values are defined and calculated.

Definition: the limit of f(xX) as x tends to a is defined as the value of f(x) as x
approaches closer and closer to a without actually reaching it and denoted by:

lim f,,=L  Lisa single finite real number

X—a
It's important to know

1. We don’t evaluate the limit by actually substituting x = a in f(x) in general,
although in some cases its possible.

2. The value of the limit can depend on which side its approach

3. The limit may not exist at all.

Example 13: to explain the concept of limit, take the function f(x) = 2x — 4 if the

x—1

But the following table express many values of x can be expressed close to 1.

X 0.5 0.8 0.9 099 | 0999 | 1001 | 1.01 1.1 1.2
f(x) -3 -2.4 -22 | -202 | -2.002 | -1.998 | -1.98 | -1.8 -1.6

Question: Why we take values approaches to 2 in example 13 instead we take x = 1
directly?

Solution: the answer about this question can be expressed in the following example:

_1
f(X) =3 X2 +1
If x=0then 1/0 = «

So..
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X +0.2 +0.5 etc..
f(x) | 1.00000 | 1.012345679

In limits we avoid «

THE TANGENT PROBLEM

The word tangent is derived from the Latin word tangens, which means “touching.”
Thus a tangent to a curve is a line that touches the curve. In other words, a tangent
line should have the same direction as the curve at the point of contact. How can this

idea be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line that
intersects the circle once and only once as in Figure (a). For more complicated curves

this definition is inadequate as shown in Figure (b)

Y

Example 14: Find an eq. of the tangent line to the parabola y = x? at point (1,1)?

Solution

We will be able to find an equation of the tangent line £ as soon as we know its
slope m. The difficulty is that we know only one point, P, on f, whereas we need two
points to compute the slope. But observe that we can compute an approximation to m by
choosing a nearby point Q(x, x*) on the parabola (as in Figure ) and computing the
slope mpg of the secant line PQ.

We choose x # | so that Q@ # P. Then
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x?—1
Mpg = ———
e x— 1

For instance, for the point Q(1.5, 2.25) we have

Mpg = l 5 = =25

The tables in the margin show the values of mpg for several values of x close to 1. The
closer Q is to P, the closer x is to | and, it appears from the tables, the closer nipg is to 2.
This suggests that the slope of the tangent line f should be m = 2.

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

2
: coxm— 1
lim mpp = m and Iim——=2
0—P =1 x — 1
Assuming that the slope of the tangent line is indeed 2, we use the point-slope form

of the equation of a line  to write the equation of the tangent line

y—1=2(x—-1) or y=2x—1
X Mpg
) 2 3
1.5 2.5
1.1 2.1
1.01 2.01
= 1.001 2.001
Q approaches P from the right | Mro
y
0 I
0.5 1.5
0.9 1.9
0.99 1.99
) 0.999 1.999

@ approaches P from the left

THE VELOCITY PROBLEM
If you watch the speedometer of a car as you travel in city traffic, you see that the

needle doesn'’t stay still for very long; that is, the velocity of the car is not constant. We
assume from watching the speedometer that the car has a definite velocity at each
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moment, but how is the “instantaneous” velocity defined? Let's investigate the

example of a falling ball.

Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

" Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after
t seconds is denoted by s(f) and measured in meters, then Galileo’s law is expressed by
the equation

s(f) = 4.9¢*

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time (f = 5), so no time interval is involved. However, we can approximate the
desired quantity by computing the average velocity over the brief time interval of a tenth
of asecond fromi = 5tor=35.1:

change in position

average velocity = . lapsed
ime elapse

s(5.1) — s(5)
0.1

The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

Time interval Average velocity (m/s)
5=r=6 33.9
5=t=25l1 4949
5=r=505 49245
5=r=501 49.049
5=1t= 5001 49.0049
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It appears that as we shorten the time period, the average velocity is becoming closer to
49 m/s. The instantaneous velocity when 1 = 3 is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at t = 5. Thus
the (instantaneous) velocity after 5 s is

v=49m/s O

You may have the feeling that the calculations vsed in solving this problem are very sim-
ilar to those used earlier in this section to find tangents. In fact, there is a close connec-
tion between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points
P(a.4.9a") and Qla + h,4.9(a + h)*) on the graph. then the slope of the secant line
PO is

4.9(a + h)* — 4.9a°
(a+h) —a

Mpg =

which is the same as the average velocity over the time interval [a, a + h]. Therefore, the
velocity at time f = a (the limit of these average velocities as i approaches 0) must be
equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

Ly g

A/ .S
.;=4.9r£..-’ s=49c0)  /

slope of secant line

= average velocity slope of tangent

= instantaneous velocity

{ 0 / a i
. . x? -9
Example 15: Discuss the function f,, = 3
X —

If (1) x=1,x=2
(2) x=3
(3) x> 1, x>»2

(4) x—=»3
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Solution:

x> -9 _ (x=3)(x+3)

(x) = =x+3 andx#3
X—3 (x=3)

Its equivalent to g(x) = x+3 and x # 3, then:
f(1)=9(1)=4
f(2)=9(2) =5

if x—»1thenf(x)=4 and Iimlf(x)=4
X—

if x = 3 then f(3) = 0/0 = =

ifx =3 then limf,,=6

X—3

Calculus |
Calculus | Group
1% Year

note: if f(x) is defined by two different forms before and after x = a then we must

discuss the left limit and the right limit.

Properties of limits:

X—a X—a

Then:

1. limk f,=kb forany constant k

X—a
3. )['_Eg[ foo-901= )I(I_r)rl f(x)')l(i_r;gg(x) =bc
X—a X—a X—a

: lim[ foy1""=Db""  real valuesonly for n

The limit must exist before applying the above results.
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Example 16: find the limits of the following functions:
2_ f—
1 im=X23 = i 2230 3) in(x+3)=3+3-6
x»>3  X—3 Xx—3 (x=3) x—3
5 Iim_\/x+2—2_ .m_\/x+2—2*\/x+2+2_|.m_ (x+2)-4
Txo2 X=2 %2 X=2  x4242 x52 x—2x+2+2
I T
V24242 2+2 4
2
3 Iim:3x2+2x+1 32
x—o  5XT+7X+1
3+§+i2
: X x2 3
||m=ﬁ:g
T By
X X
0 n<m
n n-1
lim = 8% &g X 1+ ...... ta, _[a o
Note: x> b X" +a, X" " +...+b, \Db
00 n>m
Example 17: find
. x? -1
lim =
> (x—1)x2 +2x+3
Solution:
Cim=— O ZDOHD) k1) — tim x2+2x+3:2+\/lim(x2+2x+3)
x—1 (X—l) ,X2+2X+3 x—1 x—1 x—1
2
=2+46 ==
J6
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Theorem | Ifg(x) <f(x) <h(x)and x—a X—>a
Iimﬁzl orlimwzl
Theorem Il ¢-0 6 x»a (x-a)

Example 18:

sin5x

1. fim SMSX_ _ 5x
x—0 sin7x SIN7X
7x

5 lim sin(x—2):Iim sin(x—2) _ 1 _
Coxo2 X240 ko2 (x=2)(x+2) (x+2)

5x

=5/7
7 X

1/4

Left and right — side limits

3Xx+2 x<?2

Example 19: Discuss the Iin; f(x)if f(x)=(4 X=2
X—>
8-x x>2
Solution: .
Ifx>2 4
y 8
Thenf (2*) = lim f(x)=Ilim (8-x)=8-2=6 VAR
enf (@) = i 100=lin (8-x) VARSNE
If x < 2 then A A ‘
f(2) lim f(x)=1lim (3x+2)=8 /1
X—2 X—2 i

Then right limit # left limit at x = 2

lim f(x)
Then, we say that *-2 doesn’t exists
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Limits at Infinity: Horizontal Asymptote

[T] DEFINITION Let f be a function defined on some interval (a, o). Then
lim f(x) =L

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large.

Y
=
ER
=]

H X

The line L is called horizontal asymptote of the graph of the function (f). If the value of
f(x) increases without bound as x —»+ « or x — - «, then we write:

X—>+00

lim  f(x)= o lim f(x)=—0
Or x>

If the value of f(x) decreases without bound as x + % Or X - «, then we write:

lim f(x)=-o lim f(x)=+o

X—>+00 Or x>

[2] DEFINITION Let f be a function defined on some interval (—oo, a). Then
lim flx)=1L

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large negative.

DEFINITION The line y = L is called a horizontal asymptote of the curve
y = f(x) if either

lim f(x)=L  or lim f(x) =L

I—® I—s—m
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Example 20: Find lim 1 and lim 1

X— X X——o X
Solution:

Observe that when x is large, 1/x is small. For instance,

1 1
E = (0.01 10.000 = (0.0001 m = (0.000001

In fact, by taking x large enough, we can make 1/x as close to 0 as we please. Therefore,
according to Definition 1, we have

1
lim—=20

r—= X

Similar reasoning shows that when x is large negative, 1/x is small negative, so we also
have

1
lim —=10

X—>—a x

It follows that the line y = 0 (the x-axis) is a horizontal asymptote of the curve y = 1/x.
(This is an equilateral hyperbola; see Figure 6.) O

THEOREM If r = 0 is a rational number, then

If r == 0O is a rational number such that x” is defined for all x, then

1
lim —=20

x——= x"
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Infinite limits and Vertical Asymptotes

As the line x = a is a vertical asymptote if at least one of the following statements is

true:
lim f(x) = lim f(x) = o
_lim_ flx) = —w _liln_ flx) = —oc
Example 21: lim In(4 — x?) = —o lim In(4 — x?) = —m
Vi
I (0, In 4) I
= _2 I .f/z____ - ._....__\l‘- I Y= 2
! ""f h !
| of A =
|.' —+/3,0] [+/3,0) |
! {l
| |
| ||
Continuity

If the limit of a function as approaches can often be found simply by calculating the

value of the function at . Functions with this property are called continuous at a.

[I] DEFINITION A function f is continuous at a number a if

lim (x) = f(a)
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Notice that Definition | implicitly requires three things if f is continuous at a:

I. f(a) is defined (that is, a is in the domain of f)
2. lim f(x) exists

I—a

3. lim f(x) = f(a)

Physical phenomena are usually continuous. For instance, the displacement or
velocity of a vehicle varies continuously with time, as does a person’s height. But

discontinuities do occur in such situations as electric currents.

As illustrated in Figure 1, if f is continuous,
then the points (x, £(x)) on the graph of f
approach the point (a, f(a)) on the graph. So
there is no gap in the curve.

Vi y= j-l._rl )
.“.’L 1 l 'x....
approaches + fia) rd
fla). [ A

0 x

As x approaches a,

Example 22: In figure below, at which numbers the function f is discontinuous? Why?
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Solution:

It looks as if there is a discontinuity when a = 1 because the graph has a break
there. The official reason that fis discontinuous at 1 is that f(1) is not defined.

The graph also has a break when a = 3, but the reason for the discontinuity is differ-
ent. Here, f(3) is defined, but lim,_.; f(x) does not exist (because the left and right limits
are different). So fis discontinuous at 3.

What about a = 57 Here, f(5) is defined and lim,_.s f(x) exists (because the left and
right limits are the same). But

lim f(x) = f(5)

So f is discontinuous at 5.

Example 23: Where are each of the following functions discontinuous?

2_x-—-2 — fx=0
(a) f(x}=% b fx)={x " 7F
1 if x=10
X" — X —
fx+=2
©f0=4 x—2 7 ) f(x) = [x]
1 if x=2
Solution:
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(a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we’ll see why f is
continuous at all other numbers.

(b) Here f(0) = 1 is defined but
S = i

does not exist. (See Example 8 in Section 2.2.) So f is discontinuous at 0.
(c) Here f(2) = 1 is defined and

xr—x—2 (x—2)x+1)

i e e - R
exists. But
lim f(x) = f(2)

so f is not continuous at 2.

(d) The greatest integer function f(x) = [x] bas discontinuities at all of the integers
because lim,_., [x] does not exist if  is an integer.

Figure shows the graphs of the functions in Example 23 In each case the graph can’t
be drawn without lifting the pen from the paper because a hole or break or jump occurs in
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable
because we could remove the discontinuity by redefining f at just the single number 2.
[The function g(x) = x + 1 is continuous.] The discontinuity in part (b) is called an infi-
nite discontinuity. The discontinuities in part (d) are called jump discontinuities because
the function “jumps” from one value to another.

y 5 | y y
/ | \ / —
| | -— 2
1 1 . 1

_/f AN
0 ]I 2| x 0 x 0 i 2| x 0 ; é |3 x
N 1. X—x-2 .
2_y_ L irx=0
(@) flx)== xfg z o =] " LC}f[XJ=[ x—a3 xF2 (d) f(x)=Ix]
1 if x=0 1 if x=2
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|E| THEOREM

(a) Any polynomial is continuous everywhere; that is, it is continuous on
R = (—oo, o).

(b) Any rational function is continuous wherever it is defined; that is, it is contin-
uous on its domain.

|7] THEOREM The following types of functions are continuous at every number in
their domains:

polynomials rational functions root functions
trigonometric functions inverse trigonometric functions
exponential functions logarithmic functions
2
X3 +2x% -1

im
Example 24: x»2  5-3X

Solution:

The function

(x) = 42— 1
T =575
is rational, so by Theorem 5 it is continuous on its domain, which is {x|x = 3}.
Therefore
x4+ 2 -1 , _
11—1”—11 5—-3x ; Il_~1|1_1: f@ =12
=2 +2(—-2)* -1 1
_Cpracyot 1 .
5 —3(—2) 11

Tangent line, Derivatives and Rates of Change

The problem of finding the tangent line to a curve and the problem of finding the

velocity of an object both involve finding the same type of limit, as we saw in previous
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section. This special type of limit is called a derivative and we will see that it can be

interpreted as a rate of change in any of the sciences or engineering.

[1] DEFINITION The tangent line to the curve y = f(x) at the point P(a, f(a)) is
the line through P with slope

m = lim —f{” G

x—*a X —da

provided that this limit exists.

Example 25: Find an equation of the tangent line to the parabola y =x? at point P(1,1).
Solution:

Here we have @ = 1 and f(x) = x?, so the slope is

m = H,HM — Hmu
x—+] X — ] — X — 1
o x—=Dx+1)
= lim
x—l xr—1

=limx+1)=1+1=2

x—l

Using the point-slope form of the equation of a line, we find that an equation of the

tangent line at (1,1) is

y—1=2{x—-1) or y=2x-—1
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Note:

There is another expression for the slope of a tangent line that is sometimes easier to
use. If h = x — a, then x = a + h and so the slope of the secant line PQ is

_ fla + h) — fla)

MHlpa I
m = lim fla + f;) — fla)

Example 26: Find an equation of the tangent line to the hyperbola y = 3/x at point
(3,2).

Solution:

Let f(x) = 3/x. Then the slope of the tangent at (3, 1) is

3 1 3—(3+h
34+ h)— f(3 341/ 3+
m = lim it ) — /) = lim—r = lim—I
k=0 h h—=0 h h—=0 h
i 1 __1
J|1—I.~TI.!+ h(3 + h) J|1—I.~TI.!+ 3+ h 3

Therefore an equation of the tangent at the point (3, 1) is

which simplifies to x+3y—6=0
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Y,
x+3yv—6=0

[4] DEFINITION The derivative of a function f at a number a, denoted by
fla), is
fla + h) — f(a)

h

f1@ = fim

if this limit exists.

Example 27: Find the derivative of the function f(x) = x2 — 8x +9 at the number a.

Solution: From Definition 4 we have

fla + h) — fla)

/'@ = i

h

o [(@a+ h)?— 8(a+ h)+9]—[a*— 8a + 9]
_k1—~ngr h
_ a*+2ah+h*"—8a —8h+9—a*+ 8 —9

n-l—[:gr h

2ah + h* — 8h

— lim—~ " " —lim(a+h—8)

P— h —0
=2a— 8
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RATES OF CHANGE

Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and
we write y = f(x). If x changes from x, to x, then the change in x (also called the incre-
ment of x) is

Ar=1x —x

and the corresponding change in y is

Ay = f(x2) — f(x))
The difference quotient

Ay flx) — flx)

Ax Xy — X,

is called the average rate of change of y with respect to x over an interval

Ay flx2) — flx)
instant s rate of cha = |lim — = lim ———m
IE msiantancous rate oI C 'l.“.gf: -_‘|,_|,I-.£]ﬂ al ,1-21—5-]}-1 X — 1
Qx5 flx,))

average rate of change = mpy
instantaneous rate of change =
slope of tangent at P

Example 28: A manufacturer produces bolts of a fabric with a fixed width. The cost of

producing x yards of this fabric is C= f(x) dollars,
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(a) What is the meaning of the derivative f'(x), what are its units?
(b) In practical terms, what does it mean to say that f(1000) = 9?

(c) Which do you think is greater (50) or f(500), what about f(5000)?

Solution:

(a) The derivative f'(x) is the instantaneous rate of change of C with respect to x; that
is, f'(x) means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost.

Because
, . AC
flx) = lim A
the units for f'(x) are the same as the units for the difference quotient AC/Ax. Since
AC is measured in dollars and Ax in yards, it follows that the units for f'(x) are dollars
per yard.
(b) The statement that f'(1000) = 9 means that, after 1000 yards of fabric have been
manufactured, the rate at which the production cost is increasing is $9/yard. (When
x = 1000, C is increasing 9 times as fast as x.)
Since Ax = 1 is small compared with x = 1000, we could use the approximation

AC AC
(1000) = — = ——=AC
A ) Ax 1
and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x = 500 than when x = 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efficient
use of the fixed costs of production.) So

f(50) = f'(500)
But, as production expands, the resulting large-scale operation might become inefficient

and there might be overtime costs. Thus it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

£'(5000) = £'(500) m
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3 Differentiation

Introduction
Derivative: it's a function we use to measure the rates at which things change, like

slope and velocity and accelerations.

The derivative of a function is a function f' where value at x is defined in the equation:

£ (x)= lim f(x+h)-f(x)

h—-0 h

f(x+h)—f(x)
The function h is the difference quotient for f at x.

h is the difference increment.

f'(x) is the first derivate of the function f at x. See figure below.

F \
i
Flmtny| /S y=fix)
|
[ Flm+ R )= f(xo)
fim)y| AL !
| I
| |
| |
| |
| |
| |
| |
| |
| e |
¥ Y -
O Xn XD+J2 X

The most common notation for the differentiation of a function y = f(x) besides f(x) or
dy/dx and df/dx Dx(f) (Dx off) .. etc..

47



University of Anbar Calculus |
College of Engineering Calculus | Group
Department(s): Civil Eng. 1% Year

Semester | (2019-2020)

Application of differentiation:

The velocity and acceleration at time t and

Problems of cost , maxima and minima

Electrical circuits’ problem

Any other problems related to rate of change.

Example 29: Find the derivative of f(x) = x>~ 2x using the definition.

Solution

f(x) = x>— 2x

£ (x)= lim f(x+h)—f(x)
h—-0 h

f(x+h)=(x+h)>=2(x+h)=x?+2xh+h®-2x—-2h

f(x+h)—f(x) x*+2xh+h®-2x—2h—(x*-2x)

h h
X2 +2xh+h? —2x—2h—x?>+2x h%+2hx-2h
= = =h+2x-2
h h
We can take the limitas h —0: -
f'(x):hlimO (h+2x-2)= 2x-2
dy 1

Example 30: Show that the derivative of Y= Vx is dx 2/x

Solution:

f(x+h)=+/x+h f(x)=+/x

and
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f(x+h)—f(x) _Vx+h-/x
h h + 0 (Not OK)

FOeh) = F(x) _x+h=+x Jx+h+yx
h - h Ix+h++x

_ (x+h)-x 1

- hv/x+h +\/;: h'X +h ++/x

@ lim 1 -
dx h>-0 hyx+h++/x  2Jx Ok
The Power Rule If n is a positive integer, then
d
E{x”} = nx""!
FIRST PROOF The formula
"—a"=(x—ax""+x"%a+ - +xa" T +a"")
can be verified simply by multiplying out the right-hand side {or by summing the sec-
ond factor as a geometric series). If f(x) = x", we can use Equation 2.7.5 for f'(a) and
the equation above to write
(@) = lim fx) — fla) _ lim X — @
I—a XxX—a I—d X —a
=lim(x"'+x" %2+ .- + xa"? + a"")
=a"'+a" a4+ -+ aa"" + a"!
— ml—l
k
: . 1
Example 31: Differentiate (@) f(x)=— (b) y = ¥/x?
X

Solution:
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In each case we rewrite the function as a power of x.
(a) Since f(x) = x~%, we use the Power Rule withn = —2:

d 2
fi(x) = E(I"Z} = 2xTl=—2x3%= =

d d
) D L (Y7) = () = e = 3

Slope and tangent lines:

Example 32: Find an eq. for the tangent to the curvey = 2/x at x = 3

Solution:

f(x+h)=f(x)

m= f' (x)= lim

h—-0 h
f(x+h)=i
X+h
2 2 2x-2x-2h
f(x+h)—f(x)zx+h_;: (x+h)x —-2h _-2
h h h (x+h)x X2
m= f (x)=—2/x*
atx =3 m =-2/(3)?
Theny =-2/9

y + 2/3 = -2/9 (x-3)
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Rules for differentiation

If f and g are differentiable functions, the following differentiation rules are valid

d d d . . Y.
L E{f{x]+s{x]}=af{x]+ag{x] =f(x)+g'(x) (Addition Rule)
d d d
2. I fx) —glx)} = EI{XJ - Eg{ﬂ =f'(x) — g'(x)
3 d C —Cd =Cf"’ here C i stant
. E{ f(x)} = Ef{x]- f'(x) where C is any con

d d d , :
4 2 {(980) =) 800 +8(x) 5 () =f(x)g'() +8(x)f'x)  (Product Rule)

d d
5. i {_@ _ 2(x) Ef{x] —fx) EH{-"] _ 2(x) (%) — f(x)e'(x) if ¢) £0 (Quotient Rule)

gx)] ~ [g(x)]° e
d
6. d—X(C)=O
i ny_ n-1
7. dx(x )=nx
8. i(lnx)=d—x or ldx
dx X X

9. i(eX)=eX dx
dx

d

10. —
dx

(a*)=a" Ina dx

d 1 1 1
11, —( | == e=—,—d
dx( 09.%) X 0Ga € x Ina X
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Example 33: If f(x) = e* — x, find f" and f". Compare the graphs of f and f'.
Solution: Using the Difference Rule, we have

¥ — i I — i I i — X
foy=_-lef—x)=——()———W=e"—1
we defined the second denivative as the derivative of ', so

() = %(e’ - 1) = %{e*) ~ im — ¢t

The function f and its derivative f’ are graphed in Figure . Notice that f has a hori-
zontal tangent when x = 0; this corresponds to I#]f:, fact that f'(0) = 0. Notice also that,
for x > 0, f'(x) is positive and f is increasing. When x < 0, f'(x) is negative and f is
decreasing. [

P = = 1.3

: T+x-—2
Example 34: Lety = > : * 2 Then
x+6

' (13+6]§(12+x—2}—[x2+x—2}%{x3+6}

y =  + 6)

_ @+ 6)2x+1) — (" +x — 2)(3x")
B (o + 6)?

o (2x* 4+ 7+ 12x 4+ 6) — (3x* + 3x' — 6x7)
(x* + 67

. xt—2+ 6"+ 12x+ 6
(x* + 6)
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Example 35:

Find an equation of the tangent line to the curve y = /(1 + x*) at
the point {l._, %e].

According to the Quotient Rule, we have

{1+ f]%[e’} — e’ %(] + x%)

dy _

dx 1+ x*)?
1+ x%)ef —e*(2x) (1 — 2x + x7)
B (1 + x?7 (14
el —xy
T+ 2

So the slope of the tangent line at [l, %e) is

dy
- =1
dx =1

3
This means that the tangent line at (1, %e} is horizontal and its equation is y = ze.

Derivatives of trigonometric functions

- Xis measured in radians

fGa+h) —fx)
h

flx) = lim

Example 36: Find d/dx {sinx} ?
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Solution:
v flx+h)—flx) . sin(x+ h)—sinx
f'(x) = lim A = oy h
. sinxcosh+ cosxsinh —sinx
= lim
0 h
— i _sinx cosh—sinx+cnsxsinh
A | h h
— i _, cos h — | N sin h
= lim _5111 A\ = COS X B
L o cosh—1 . . sinh
(1] = lim sin x + lim ———— + lim cos x - lim
—0 h—s0 h h—0 h—0  h

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as A — 0, we have

lim sin x = sin x and lim cos x = cos x
h—s0 h—0
But :
. smf cos f — 1
lim =1 lim ——=10
fi—0 & f—0
Then
L. o cosh—1 . . sinh
f(x) =limsinx- lim——— + lim cos x - lim
h—=0 h—0 h h—0 h—0

=(sinx) -0+ (cosx)-1 =cosx

50 we have proved the formula for the derivative of the sine function:

d, . .
E E(sm x) =cos x
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Derivatives of Trigonometric Functions
%[sinx}=ccﬂx %(cscx}= —csc x cot x
d d
- E[cusx]=—sinx E(sacx}=sm:xtanx
d d
e (tan x) = sec’x I (cot x) = —csc’x

Example 37: Differentiate y = x " sin x.
Solution: Using the Product Rule and Formula 4, we have
dy ,d . ) X
_— JE— + JE— =
o X - (sin x) + sin x = (x°)
= x’cos x + 2xsin x
Example 38:

SeC

Differentiate f(x) = l—x For what values of x does the graph
of f have a horizontal tangent? + tan x

Solution:

{1+ tanx}%[secx} — secx%{l + tan x)

f(x)=

(1 + tan x)*

_Q + tan x) sec x tan x — Sec X * Sec'x
(1 + tan x)*

sec x (tan x + tan’x — sec’x)

(1 + tan x)°

_ secx(tanx — 1)
(1 + tan x)

In simplifying the answer we have used the identity tan’x + 1 = sec’x.

Since sec x is never 0, we see that f'(x) = 0 when tan x = 1, and this occurs when
x = nw + /4, where n is an integer (see Figure ). [ |
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Example 39:
d
E{x“+ 12x° —4x* + 102 — 6x + 5)
d d d d d d
=— 0N+ 12— ) - 4— N+ 10— () —6— @) +—(5
ix[x} dx{x} dx[x} dx{x} :ixm :ix[]
=8 + 12(5x%) — 4(4x*) + 10(3x%) — 6(1) + 0

=8x" + 60x* — 16x* + 3022 — 6

Example 40: _
The equation of motion of a particle is s = 2t — 5t° + 3t + 4, where s
is measured in centimeters and f in seconds. Find the acceleration as a function of time.

What is the acceleration after 2 seconds?
The velocity and acceleration are

d
o) == =612 — 106 + 3
dt

d
al) =2 =12t~ 10
dt

The acceleration after 2 s is a(2) = 14 cm/s”. [ ]
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NOTE Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s
easier to rewrite a quotient first to put it in a form that is simpler for the purpose of dif-
ferentiation. For instance, although it is possible to differentiate the function

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

F(x) =3x + 2x7 '

before differentiating.

Higher order derivatives

Example 43: Find y', y", and y"™ for the following functions:

y=2x3+x-5
1.
_2X
2 Y 1-2x
Solution
y=2x3+x-5
y' =6x%+1
y"=12X
y"I=12
_2X
) 1-2x
y  (1=2X)*2-2x*(-2) 2-4X+4x _ 2
(1-2x)? (1-2x)>  (1-2x)?
w_ —2%2(1-2x)*(=-2) _ 8
(1-2x)* (1-2x)*
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p_ —8*3(1-2x)**(-2) 48
- (1-2x)° T (1-2x)*

The Chain Rule

Calculus |
Calculus | Group
1% Year

and F’ is given by the product

then
dy _ dy du
dx di dx

F'(x) = f'(g(x)) - g'(x)

In Leibniz notation, if y = f(u) and # = g(x) are both differentiable functions,

The Chain Rule If g is differentiable at x and § is differentiable at g{x), then
the composite function F = f = g defined by F(x) = f{g(x)) is differentiable at x

COMMENTS ON THE PROOF OF THE CHAIN RULE Let Au be the change in u correspond-

ing to a change of Ax in x, that is,
Au = g{x + Ax) — g{x)
Then the corresponding change in ¥ is

Ay = flu + Aw) — f(u)

It is tempting to write

{Note that Auw — Oas Ax — 0
since g is continuous.)
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The Chain Rule can be written either in the prime notation
2] (feg)'(x) = f(g(x)) - g'(x)
or, if y = f(u) and u = g(x), in Leibniz notation:

dv dv du
3 S 2
ex du dx

r 2
Example 44: Find F(xyif 00 = VX +1

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed F as
F(x) = (f° g)(x) = f(g(x)) where f(u) = v/u and g(x) = x* + 1. Since

fw) =3 = 2:?; and g'(x) =2x
we have F'(x) = f'(g(x)) - g'(x)
1

x
_—— = 11':—
20x1+ 1 Vxi+1

SOLUTION 2 (using Equation 3): Fweletu =x" + landy = JE, then

P = By due _ 1

du dx  2Ju

(2x) =

1 x
— () =—
21,.!':1:2+1( ) Vx4 1

NOTE In using the Chain Rule we work from the outside to the inside. Formula 2
says that we differentiate the outer function f [at the inner function g(x)] and then we
multiply by the derivative of the inner function.

d
o f (gxp = f (glx)) - g'x)
i A " " d K 4 " A
outer evaluated derivative evaluated derivative
function at inner of outer at inner of nner
function function function function
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Example 45 Differentiate (a) y = sin(x*) and (b) y = sin‘x.

SOLUTION
(a) If y = sin(x?), then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

dy d ) 2 . 2
—— =— &in (x%) = COs (x%) . 2x
dx dx
| S S— S| [
outer evaluated denvative evaluated denvative
function at inner of outer at inner of inner
function function function function
= 2x cos(x?)

(b) Note that sin®x = (sin x)°. Here the outer function is the squaring function and the
inner function is the sine function. So

dy d . .
— =—(sinxf) = 2 - (sinx) -  ©cosx
dx dx
Inner denvative  evaluated dervative
function of outer at inner of inner
function function function
Example 46: Write the composite function in the form f(g(x)).

[Identify the inner function # = g(x) and the outer function
y = f(u).] Then find the derivative dy/dx.

1. y=J1 + 4x 2. y=(2x*+ 5)*
3. y=tanmx 4, y = sin(cot x)

5.y=e*/; 6. y=+2—¢€*

Solution
dy dy du 1. —2/3 4
1. Letu = =1+4zandy = = 8/u. Then = = = — = (3 ==
u=g(®) =1+4wandy = f(u) = Ju Then —= = == — = (3u~""*)(4) 3T 12)
2 Tetu = g(z) =22° + 5and y = f(u) =u". Then dy = dy du = (44%)(62”) = 24x* (22° + 5)%.
dr dudx
— g(z) — — ) — dy _dydu 2 — rsec?
3. Letu = g(z) =mzrand y = fu) =tanw. Thendw = a4 = (sec” u)(m) = 7 sec” wx.
. dy dydu 9 2
4 Letu = g(x) = cotx and y = f(u) = sinu. Then —= = —=-— = (cos u)(— csc? £) = — cos(cot z) csc? =.
dr dudz
5 ]'_tetu:g(g;) :.\/Eandy:f(u):eu Thcn@ :@& = (eu)(lm—l/'z) :B\/;'L — 6\/;
) ’ dr dudx 2 2/ 24z
—g(@) =2 c®andy = f(u) = By _dydu iy oy &
6. Letu=g(z)=2—¢ andy—f(u)—\/a.'l'hendm—dudm—(.ju )(—e®) = o
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Implicit Differentiation

To find dy/dx for any equation involving x and y differentiation each of term in the

equation with respect to x instead of finding y in terms of x.

Example 47 Find y” if x* + y* = 16.
Solution Differentiating the equation implicitly with respect to x, we get
4x* + dyly' =0

Solving for y" gives
, X
£l y=—%

To find ¥" we differentiate this expression for y' using the Quotient Rule and remem-
bering that y is a function of x:

n_d (_ x3) _ Y d/d)(x*) — x* (d/d)(y*)

s o

},3

'3 — X'3y?y)
yvﬁ

If we now substitute Equation 3 into this expression, we get

3
3xzy3 — 3.1'33:2( —%)

3(x%y* + xf) B 3x%(y* + x*)
7 7

y y

But the values of x and y must satisfy the original equation x* + y* = 16. So the
answer simplifies to
. 3x%(16) x?
y =- 7 = 8
y y
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¥4 4 4
x*+y*=16
/- - _2 -"--.x\\.
I 1
|
| 0 PR
| |
\ A

Related Rates

In a related rates problem the idea is to compute the rate of change of one quantity in
terms of the rate of change of another quantity (which may be more easily measured).
The procedure is to find an equation that relates the two quantities and then use the
Chain Rule to differentiate both sides with respect to time.

Problem Solving Strategy

1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5. Write an equation that relates the various quantities of the problem. If necessary,

use the geometry of the situation to eliminate one of the variables by substitution.

6. Use the Chain Rule to differentiate both sides of the equation with respect to t.

7. Substitute the given information into the resulting equation and solve for the unknown rate.
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Example 72:

Air is being pumped into a spherical balloon so that its volume increases
at a rate of 100 cm’/'s. How fast is the radius of the balloon increasing when the diam-
eter is 30 cm?

SOLUTION We start by identifying two things:
the given information.
the rate of increase of the volume of air is 100 cm¥/s
and the unknown:
the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time #. The rate of increase of the vol-
ume with respect to time is the derivative dV/dt, and the rate of increase of the radius is
dr/dt. We can therefore restate the given and the unknown as follows:

av
Given: o= 100 cm/s
dr
Unkriown: A when r = 25 cm

In order to connect dV/dt and dr/dt, we first relate V and r by the formula for the
volume of a sphere:

V= ;l‘m'

In order to use the given information, we differentiate each side of this equation with
respect to £. To differentiate the right side, we need to use the Chain Rule:

dV _ dV dr , dr
_dvdr_, Ldr

dt  dr dt dt

Now we solve for the unknown quantity:

1 av
dt dmrl dt
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If we put r = 25 and dV/dt = 100 in this equation, we obtain

dr 1 1
= 100 = —
dt  4w(25) 257

The radius of the balloon is increasing at the rate of 1/(257) = 0.0127 cm/s.

Example 73:

A water tank has the shape of an inverted circular cone with base radius
2 m and height 4 m. If water is being pumped into the tank at a rate of 2 m*/min, find
the rate at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label 1t as in Figure 3. Let V, r, and h be the
volume of the water, the radius of the surface, and the height of the water at time r,
where t is measured in minutes.

We are given that dV/dt = 2 m’/min and we are asked to find dh/dt when h is 3 m.
The guantities V and h are related by the equation

V= i':rrrzh

but it is very useful to express V as a function of h alone. In order to eliminate r, we use

Vi
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the similar triangles in Figure 3 to write

Now we can differentiate each side with respect to f:

v _m ,dh
dt 47 dt
dn 4 dv
50 dt  wh® dt

Substituting i = 3 m and dV/dt = 2 m*/min, we have

dh 4 ,_ 8
d w3 ° Og

The water level is rising at a rate of 8/(94r) = (.28 m/min.
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Example 74:

A man walks along a straight path at a speed of 4 ft/s. A searchlight is
located on the ground 20 ft from the path and is kept focused on the man. At what rate
1s the searchlight rotating when the man 1s 15 ft from the point on the path closest to
the searchlight?

SOLUTION We draw Figure 5 and let x be the distance from the man to the point on the
path closest to the searchlight. We let # be the angle between the beam of the search-

light and the perpendicular to the path.
We are given that dx/dt = 4 ft/s and are asked to find d6/dt when x = 15. The
equation that relalhs x and # can be written from Figure 5:

X

E=ta.nﬂ x=20tan &

Differentiating each side with respect to ¢, we get (. ‘i‘

Fils] 1 . dx
S0 =—cos i —

dt 20 dt

1 1
= —cosB(4) = r cos'f

20

When x = 15, the length of the beam 15 25, so cos # = %and

o 1(4\* 16
() =—2=0128
dt 5 (5) 125

The searchlight is rotating at a rate of 0.128 rad/s. [ |
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Indeterminate Forms and L’Hospital’s Rule

John Bernoulli discovered a rule using derivatives to calculate limits of
fractions whose numerators and denominators both approach zero or +~. The

rule is known today as I’Hépital’s Rule, after Guillaume de I’Hépital.

Indeterminate Form 0/0

If we want to know how the function

Fio) =X —;in X
behaves near x = 0 (where 1t is undefined), we can examine the limit of F(x) as x— 0.
We cannot apply the Quotient Rule for limits {Theorem 1 of Chapter 2) because the limit
of the denominator i1s (. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function F(x) under discussion by applying I'Hépital’s Rule, as we
will see in Example 1d.

If the continuous functions f{x) and g(x) are both zero at x = a, then

cannot be found by substituting x = 4. The substitution produces 0/0, a meaningless
expression, which we cannot evaluate. We use 0/0 as a notation for an expression known
as an indeterminate form. Other meaningless expressions often occur, such as oo/oo,
00-0, 0o — oo, 0°, and 1%, which cannot be evaluated in a consistent way; these are
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancelation, rearrangement of terms, or other algebraic

THEOREM 6—LHépital's Rule Suppose that f{a) = g(a) = 0, that { and
g are differentiable on an open interval [ containing a, and that g'(x) # 0 on
Iifx # a. Then

lim @ = lim @
x=*g g(x]' =+ EF{I},

assuming that the limit on the right side of this equation exists.
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Example 75:

The following limits involve 0/0 indeterminate forms, so we apply
I'Hopital’'s Rule. In some cases, it must be applied repeatedly.

. 3x —sinx . 3 —cosx _ 3 —cosx
(a) m——5—— = lim = =12
=0 - = 1 1 x=0
1
. l+x—1 VAT I |
(b} lim = lim ==
) =0 X =] 1 2
OVl +x -1 -2 0
(c) 11]1'6 2 5: apply I"'Hépital’s Rule.
== ] L
D+ 07— 12 ot S .
= EEIJI} o Sull o apply 'Hapital’s Rule again.
(/90 + 073y N
= =—= Mot = limit is found.
IH*I;I]' 2 b 1]
id) liﬂa% %: apply I'Hopital's Rule.
= ]
.1 —cosx (
= |lrl":l:l 3—1 Still % apply I"'Hipital’s Rule again.
x> x -
. sinx (
= 1]_1'2} 6x Suill % apply I"Hépital"s Rule again.
e .
_ cosx _ 1 |
= xl_rg 6 6 Mot 0 limit is found.

. Inx
Example 76: Calculate lim 3

I—=®

SOLUTION Since In x — o and 4/x — @ as x — = I"'Hospital’s Rule applies:

TLLE S S T
i E T T e

Notice that the limit on the right side is now indeterminate of type %. But instead of
applying I'Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application 1s unnecessary:
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Example 77: Find the limits of these 00,00 forms:
. sec x . Inx et
@ xllvg:fz 1 + tan x (b) ll_l_“:}c ﬂ (c) _rll{ga 2
Solution

(a) The numerator and denominator are discontinuous at x = 7 /2, so we investigate the
one-sided limits there. To apply I'Hopital’s Rule, we can choose [ to be any open
interval with x = /2 as an endpoint.

. sec X =
lim ———— — fi the left so we apply I'Hopital's Rule.
.r—t[:lrfz}'l n . = from the left so we apply I"'Hopital's Rule
sec xtan x . .
= lm ————= lim_ sinx =1
=/l Sec X x—={w {2

The right-hand limit is 1 also, with (—o0) /(—00) as the indeterminate form. Therefore,
the two-sided limit i1s equal to 1.

by fim DXy 5y L e VR
=2 VxR I VE eV Ve Y VR
Lo e e
(c) }L“F'.af = lim Zr—ler[lm 5 s’y -

Example 78: °

Evaluate Iirn+ xlnx

x—0

SOLUTION The given limit is indeterminate because, as x — 0%, the first factor (x)
approaches 0 while the second factor (In x) approaches —=. Writing x = 1/(1/x), we
have 1/x — = as x — 0 so I'Hospital’s Rule gives
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4 Applications of
Differentiation

Introduction

We use the derivative to determine the maximum and minimum values of particular

functions (e.g. cost, strength, amount of material used in a building, profit, loss,
etc.).

Change of velocity with time

flow of tank

Displacement
lrrrrn

Simple circuit with light

Maximum and Minimum Values

N N
s II‘ \\t:/ Ir :',r"x
. ~

Lscal and abesilpie minimom

Engineering mechanics

Unstretched length

}ﬂ -i:—l-"-l —
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Summary
Mechanics
dx . ) .
V=g where v = velocity, x = distance, r = time.
du ) . .
a= 7 where a = acceleration, v = velocity, ¢ = time.
t
. dW X '
F = e where F = force, W = work done {or energy wsed), r =

X
distance moved in the direction of the force.

. dp . .
F= é where F = force, p = momentum, ¢ = time.

dW
= where P = power, W = work done (or energy usad), r =

time.
dE . - .
& =" where E = kinatic energy, v = velocity, p = momentum.
g
Gases
dw . B
T3 = p. where p = pressure, W = work done under isothermal

expansion, ¥V = volume.

Circuits

dg
I = d_{:_ where / = cumrent, (! = charpe, r = time.

di
V= (IE) where V' is the voltage drop across an inductor, L =

inductance, | = current, r = time.

Electrostatics
v

E = —':l—. where V' = potential, £ = electric field, x = distance.
X

Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization
problems, in which we are required to find the optimal (best) way of doing

something.

These problems can be reduced to finding the maximum or minimum values of a

function.

Let’s first explain exactly what we mean by maximum and minimum values.
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We see that the highest point on the graph of the function f shown in Figure is the
point (3,5). In other words, the largest value of f is f(3)= 5. Likewise, the smallest

value is f(6)= 2. We say that f (3)= 5 is the absolute maximum of fand f (6)= 2 is

the absolute minimum.

In general, we use the following definition

[ 1] Definition Let ¢ be a number in the domain D of a function f. Then f(c) is
the

« absolute maximum value of f on D if f(c) = f(x) for all xin D.

« absolute minimum value of f on D if f(c) =< f(x) for all xin D.

Example 48 The function f(x) = cos x takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since cos 2rw = 1 for any integer n and
—1 = cos x = 1 for all x. (See Figure ) Likewise, cos(2rn + 1)7 = —1 is its mini-
mum value, where n is any integer.

SN N

Local and absolute mamimum
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- INCreasing
4
constant _|

-k
-3
4 . !
sl bathBits.com s
Read from Left to Right

If f(x2) > f(x1) then the function is called_increasing on its interval
If f(x2) < f(x1) then the function is called decreasing on its interval

If f(x2) = f(x1) then the function is called constant on its interval
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y = f(x)
Y Point of
y ' 0 inflexion

f + : -
/ - :
| I
| 0 l

0 | X
|
I
} |
dy :
dx I
I
|
I

0 X

Concavity

Y

Inflectio
Point

-
Concave Concave
Drownward Upward

Remember:
The graph of y=f(x) is
Concve up when y" >0

Concave down when y" <0
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Example 49:

¥4

N T

] I-'lll

N ]

Mimimum value 0, no maximum No mimimum, no maximum

Example 50: The graph of the function

flx) =3x* — 162 + 1847 —-1=x=4

is shown in Figure . You can see that f(1) = 3 is a local maximum, whereas the
absolute maximum is f(—1) = 37. (This absolute maximum is not a local maximum
because it occurs at an endpoint.) Also, f(0) = 0 is a local minimum and f(3) = —27

is both a local and an absolute minimum. Note that f has neither a local nor an absolute
maximum at x = 4.

(~1,37) ¥=3x'— 16x* + 1822

(1.5)
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We have seen that some functions have extreme values, whereas others do not. The
following theorem gives conditions under which a function is guaranteed to possess extreme

values.

Extrema of a function (maxima and minima)

(2] The Extreme Value Theorem If f is continuous on a closed interval [a, b].
then f attains an absolute maximum value f(c) and an absolute minimum value

f(d) at some numbers ¢ and d in [a, b].

The Second Derivative Test Suppose f" is continuous near c.
(a) If f'(c) = 0and f"(c) = 0, then f has a local minimum at c.
(b) If f'(c) = 0and f"(c) < 0, then f has a local maximum at c.

Example 51: Discuss the curve y = x* - 4x3 with respect to concavity, points of
inflection, and local maxima and minima. Use this information to sketch the curve

SOLUTION If f(x) = x* — 4x°, then
f(x) =4x* — 12x* = 4x%x - 3)
f(x)=12x* — 24x = 12x(x — 2)

To find the critical numbers we set f'(x) = 0 and obtain x = 0 and x = 3. (Note that f"
is a polynomial and hence defined everywhere.) To use the Second Derivative Test we
evaluate f" at these critical numbers:

fr0)=0 fr3)=36=0

Since f'(3) = 0and f"(3) = 0, f(3) = —27 is a local minimum. [In fact, the expres-
sion for f'(x) shows that f decreases to the left of 3 and increases to the right of 3.]
Since f"(0) = 0, the Second Derivative Test gives no information about the critical
number (). But since f'(x) << 0 for x << 0 and also for 0 < x << 3, the First Derivative
Test tells us that f does not have a local maximum or minimum at (.

Since f"(x) = 0 when x = U or 2, we divide the real line into intervals with these
numbers as endpoints and complete the following chart.
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Interval Frix)=12x(x — 2) Concavity

(—e=, 0) + upward

(0,2) — downward

(2, =) + upward

The point (0, 0) is an inflection point since the curve changes from concave up
to concave downward there. Also (2, —16) is an inflection point since the curve

changes from concave downward to concave upward there.
Using the local minimum, the intervals of concavity, and the inflection points,

L
Y

inflection
points

{3.-2T)

@ Definition A critical number of a function f 1s a number ¢ in the domain of
f such that either f'{c) = 0 or f'(c) does not exist.

Example 52: Find the critical numbers of f(x) = x¥*(4 — x).

SOLUTION The Product Rule gives
34 — x)

f@) =21 + @ = DG ) = =¥ + =

_ —Sx+34—-x) 12— 8x
= 525 S

[The same result could be obtained by first writing f(x) = 4x*° — x*°.] Therefore

f'(x) =01f 12 — 8x = 0, that is, x = 3,
critical numbers are %and 0.

and f'(x) does not exist when x = 0. Thus the
|
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Procedures for finding and distinguishing between stationary points:

1.
2.
3.

Given y = f(x), determine dy/dx (i.e. f'(x) ).
Let dy/dx = 0 and solve for the values of x.

Substitute the values of x into the original function y= f(x) to find the
corresponding y ordinate values. This would establish the nature of stationary

points.
Find d?y/dx? and sub into the values found in 2 above. If the result is:
Positive then min. point

Negative then max. point

iii. Zero then its point of inflexion (inflection)

Determine the sign of the gradient of the curve just before and just after the

stationary points. If the sign changes for the gradient of the curve is:
Positive to negative then point is max.
Negative to positive then point is min

Positive to positive or negative to negative then it's a point of inflection.

Example 53: Find the local minimum and maximum values of the function f

fo=x>=-3x*+4

Solution

f(’x)=3X2—6X f(”x)=6X—6

f(,X)=O ’ 0=3X2_6X

X=0o0r3x—6=0 thenx=2

Finding values of f"(x) at x = 0, 2

"o
floy=

)

Relative maximum point

Relative minimum point
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Summary of Curve Sketching

The following checklist is intended as a guide to sketching a curve y = f (x) by hand.

Not every item is relevant to every function. (For instance, a given curve might not

have an asymptote or possess symmetry.) But the guidelines provide all the

information you need to make a sketch that displays the most important aspects of the

function

1

A. Domain It’s often useful to start by determining the domain D of f, that is, the set

B.

of values of x for which f(x) is defined.

Intercepts The y-intercept is f(0) and this tells us where the curve intersects the
y-axis. To find the x-intercepts, we set y = 0 and solve for x. (You can omit this step
if the equation is difficult to solve.)

Symmetry

(i) If f(—x) = f(x) for all x in D, that is, the equation of the curve is unchanged
when x is replaced by —x, then f is an even function and the curve is symmetric
about the y-axis. This means that our work is cut in half. If we know what the curve
looks like for x = 0, then we need only reflect about the v-axis to obtain the com-
plete curve [see Figure -(a)]. Here are some examples: y = x*,y = x*, y = | x|, and
¥ = Ccos X.

(i) If f(=x) = —f(x) for all x in D, then f is an odd function and the curve
is symmetric about the origin. Again we can obtain the complete curve if we know
what it looks like for x = 0. [Rotate 180° about the origin; see Figure . (b).] Some
simple examples of odd functions are y = x,y = x°,y = x°, and y = sin x.
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~ S\~
o O *

(a) Even function: reflectional symmetry

¥i

\ ﬂ\
0

(b) Odd function: rotational symmetry

uy

(iii) If f(x + p) = f(x) for all x in D, where p is a positive constant, then f is
called a periodic function and the smallest such number p is called the period. For
instance, y = sin x has period 27 and y = tan x has period #. If we know what the
graph looks like in an interval of length p, then we can use translation to sketch the
entire graph (see Figure ).

¥ period p

a—p 0 a a-+p a+2p x
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D. Asymptotes

(i) Horizontal Asymptotes. Recall from chapter 2 that if either lim,_, ,, f(x) = L
or lim;—,— f(x) = L, then the line y = L is a horizontal asymptote of the curve
y = f(x). If it turns out that lim,_.. f(x) = ® (or —), then we do not have an
asymptote to the right, but this fact is still useful information for sketching the curve.

(i) Vertical Asymptotes. Recall from chapter 2 ' that the line x = a is a vertical
asymptote if at least one of the following statements is true:

(1 Jim, f(x) = lim f(x) =
lim f@)=—  lim f(x) =

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method
does not apply.) Furthermore, in sketching the curve it is very useful to know exactly
which of the statements in (1) is true. If f(a) is not defined but « is an endpoint of the
domain of f] then you should compute lim,_, ,- f(x) or lim _, .- f(x), whether or not
this limit is infinite.

(iii) Slant Asymptotes.

Some curves have asymptotes that are obligue, that is, neither horizontal nor vertical. If
lim [ f(x) — (mx + b)] =0

where m #* 0, then the line y = mx + b is called a slant asymptote because the ver-
tical distance between the curve y = f(x) and the line y = mx + b approaches 0, as
in Figure . . (A similar situation exists if we let x — —=.) For rational functions,
slant asymptotes occur when the degree of the numerator is one more than the degree of
the denominator. In such a case the equation of the slant asymptote can be found by long
division as in the following example.

yi

f‘“"{f{r} 7

flx)—fmx+b)—
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E. Intervals of Increase or Decrease Use the I/D Test. Compute f'(x) and find the
intervals on which f'(x) is positive ( f is increasing) and the intervals on which f'(x)
is negative ( f is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of f [the num-
bers ¢ where f'(c) = 0 or f'(c) does not exist]. Then use the First Derivative Test.
If f' changes from positive to negative at a critical number ¢, then f(c) is a local
maximum. If f’ changes from negative to positive at ¢, then f(c) is a local minimum.
Although it is usually preferable to use the First Derivative Test, you can use the
Second Derivative Test if f'(¢) = 0 and f"(c) # 0. Then f"“(c) = 0 implies that f(c)
is a local minimum, whereas f"“(c) < 0 implies that f(c) is a local maximum.

G. Concavity and Points of Inflection Compute f"(x) and use the Concavity Test. The
curve is concave upward where f"(x) = 0 and concave downward where f"(x) < 0.
Inflection points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A—G, draw the graph. Sketch the
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and
inflection points. Then make the curve pass through these points, rising and falling
according to E, with concavity according to G, and approaching the asymptotes.

Example 54:
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Use the guidelines to sketch the curve y =
A. The domain is

-1

x| =120 ={&|x#£l}=(—=-1DU(-1L1)U(l, =)

B. The x- and y-intercepts are both 0.
C. Since f(—x) = f(x), the function f is even. The curve is symmetric about the y-axis.
2x? 2

D. lim ————= lim =
X—tm _]:2 —1 1—zm | — l;’r.'{'l

2

Therefore the line v = 2 is a honzontal asymptote.
Since the denominator is 0 when x = %=1, we compute the following limits:

2x* 2x?
I.lm = oz 1 - = —@x
R Am T
i 2x° - I 2x*
im = - im =
a1+ 2 — ] R |
Therefore the lines x = 1 and x = —1 are vertical asymptotes. This information

about limits and asymptotes enables us to draw the preliminary sketch in Figure 3,
showing the parts of the curve near the asymptotes.

oy (x? — 1)(dx) — 2x% - 2x =4
E. f(-ﬂ = (xz — 1}1 - {xl _ ”2

Since f'(x) > 0 whenx < U (x # —1)and f(x) < Owhenx > 0(x # 1), fis
increasing on (—e, —1) and (—1, 0) and decreasing on (0, 1) and (1, ).

F. The only critical number 1s x = (. Since ' changes from positive to negative at 0,
f(0) = 0is a local maximum by the First Derivative Test.

(x?— DAM—4) + 4x - 2(x* — 1)2x _ 1222 + 4

G. flx) = xI— 1) = (X2 — 1)

Since 12x* + 4 = 0 for all x, we have
fflx) >0 <= x*"—-1>20 & |x|>1
and f"(x) <0 <& |x| < l. Thus the curve is concave upward on the intervals

(—o, —1) and (1, =) and concave downward on (—1, 1). It has no point of inflec-
tion since 1 and —1 are not in the domain of f.
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[ ¥4 ||
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| o |
| | T
/1)
| | |
|| L
x=—1 [|x=1
Example 55:
2
Sketch the graph of f(x) = TRk
X
A.Domain={x |x+ 1=>0={x| x> -1} = (-1, %)
B. The x- and y-intercepts are both 0.
C. Symmetry: None
D. Since .2
I - =
it Jx+1

there is no horizontal asymptote. Since ./x + 1 = 0asx— —1% and f(x) is

always positive, we have
2

x
li =
s Jrx+1
and so the line x = —1 1s a vertical asymptote.
E T}_\fx+I(EI}—J:E-U[TZ«..&+1}_ 3% +4x x(3x + 4)
- W= x+ 1 T2+ 17T 2+ 1)

We see that f'(x) = 0 when x = 0 (notice that —% is not in the domain of f), so the
only critical number is (0. Since f'(x) << 0 when —1 < x < 0 and f'(x) > 0 when
x = 0, f is decreasing on (—1, 0) and increasing on (0, =).

F. Since f'(0) = 0 and f' changes from negative to positive at 0, f(0) = 0is a local
(and absolute) minimum by the First Derivative Test.

2x + 1)%(6x +4) — 3 + 4x3x + )'? _ 3"+ 8x + 8

G f= Ax + 17 Ax + 1)

Mote that the denominator is always positive. The numerator is the quadratic

3x? + 8x + 8, which is always positive because its discriminant is

b* — 4ac = —32, which is negative, and the coefficient of x* is positive. Thus
f"(x) = 0 for all x in the domain of f, which means that f is concave upward on
(—1. =) and there is no point of inflection.
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Example 56:

COS X
2 +sinx’

Sketch the graph of f(x) =

A. The domain is .

B. The y-intercept is f(0) = é— The x-intercepts occur when cos x = 0, that is,
x = (w/2) + nw, where n is an integer.

C. f is neither even nor odd, but f(x + 2w) = f(x) for all x and so f is periodic and
has period 2. Thus, in what follows, we need to consider only 0 = x = 2 and
then extend the curve by translation in part H.

D. Asymptotes: None

(2 + sin x)(—sinx) — cosx (cos x) B 2sinx + 1
(2 + sinx)? (2 + sinx)?

E. fllx) =

The denominator is always positive, so f'(x) = Owhen2sinx + 1 <0 <
sin x < —% < Tw/6 < x < 1lw/6. S0 f is increasing on (77/6, 117/6) and
decreasing on (0, 7w/6) and (117/6, 2m).

F. From part E and the First Denvative Test, we see that the local minimum value 1s

f(7w/6) = —1/4/3 and the local maximum value is f(117/6) = 1/4/3.
G. If we use the Quotient Rule again and simplify, we get

2cosx (]l — sinx)
(2 + sinx)’

f(x)=—

Because (2 + sinx)” = Oand 1 — sin x = 0 for all x, we know that f"(x) = 0
when cos x < (), that is, w/2 < x < 3w/2. So f is concave upward on (72, 37w/2)

and concave downward on (0, 77/2) and (37/2, 2). The inflection points are
(ar/2. 0) and (34r/2, 0).
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Sketch the graph of y = In(4 — x?).

A, The domain 15

x|4-x"=0={x|x*<4={x||x]|<2}=(-2,2)

B. The y-intercept is f(0) = In4. To find the x-intercept we set

We know that In 1 = 0, so we have 4 — x* = 1

x-intercepts are /3.

y=Inl4-x*)=0

=

x1* = 3 and therefore the

C. Since f{—x) = fix), f is even and the curve is symmetric about the y-axis.

D. We look for vertical asymptotes at the endpoints of the domain. Since 4 — x*— 07
as x — 2~ and also as x — —27, we have

lim In(4 — x*) = —= lim In(4 — x) = —
Thus the lines ¥ = 2 and x = —2 are vertical asymptotes.
. o —2x
E. f(r] - 4 — _1'2

Since f'(x) = 0 when —2 <2 x <~ Uand f'(x)} <~ 0 when U < x <0 2, f is increasing
on (—2, 0) and decreasing on (0, 2).
F. The only critical number is x = (. Since f' changes from positive to negative at 0,
f(0) = In 4 is a local maximum by the First Derivative Test.

G. F(x) =

Since f"(x) < 0 for all x, the curve is concave downward on (—2, 2) and has no

inflection point.

(4 — x*)—2) + 2x(—2x)

_ —8 — 2x°

(4 — x°)

(4=



University of Anbar Calculus |
College of Engineering Calculus | Group
Department(s): Civil Eng. 1% Year

Semester | (2019-2020)

Optimization Problems
In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be

maximized or minimized

Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What is given?
What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown guantity. If you can, express the unknown
as a function of a single vaniable or in two equations in two unknowns. This
may require considerable manipulation.

th

Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and
second derivatives to identify and classify the function’s critical points.

Example 58:
A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the
cost of the metal to manufacture the can?.

SOLUTION Draw the diagram as in Figure 3, where r is the radius and h the height (both
in centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 27r and h. So the surface area is

A =2wr* + 2mrh

We would like to express A in terms of one variable, r. To eliminate i we use the 87
fact that the volume is given as 1 L, which is equivalent to 1000 cm®. Thus

wrh = 1000
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FIGURE 4

To find the critical numbers, we differentiate:

Alr) = dwr —

Calculus 1
Calculus | Group
1% Year

2000  4(wr® — 500)

il

rt
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Then A'(r) = 0 when 7rr* = 500, so the only critical number is r = /500/ .

The value of h corresponding to r = +/500/7 is

1000 1000 300
= = — i —
h e w(500/m)*3 2 U 2r

Thus, to minimize the cost of the can, the radius should be 3/500/7 cm and the height
should be equal to twice the radius, namely, the diameter.

Example 59

‘We want to construct a box whose base length is 3 times the base width. The

material used to build the top and bottom cost $10/ft* and the material used to build the sides cost

$6/ft>. If the box must have a volume of 50ft® determine the dimensions that will minimize the
cost to build the box.

Solution:

First, we sketch a figure as below:

I=73w

&9
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We want to minimize the cost of the materials subject to the constraint that the volume must be
50ft>. Note as well that the cost for each side is just the area of that side times the appropriate
cost.

The two functions we’ll be working with here this time are,

Minimize : C =10(2hv)+6(2wh +2lh)= 60w’ +48wh

Constraint : 50 = hwh = 3uw’h

As with the first example, we will solve the constraint for one of the variables and plug this into
the cost. It will definitely be easier to solve the constraint for / so let’s do that.

b 50'1
3w”

Plugging this into the cost gives.
800

w

C{u'_} =600 + 4811{ °0

2
w

] = 60w +

Now:. let’s get the first and second (we’ll be needing this later...) derivatives,

120w7 —800

C'(w)=120w—800w" = 3

C"(w)= 120+1600w73

Al

The next critical point will come from determuning where the numerator 1s zero.

1201° —800=0 — w=3@=3£=1.8821
\'120 \j:ﬂ
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First, we know that whatever the value of w that we get it will have to be positive and we can see
second derivative above that

provided w > 0 we will have C "(w) >0 and so in the interval of possible optimal values the

cost function will always be concave up and so 1w =1.8821 must give the absolute minimum
cost.

All we need to do now is to find the remaining dimensions.

w=1.8821
[ =3w= 3(1.8821) =5.6463
h= 0 _ 20 =4.7050

3n? 3(1.8821)

Also. even though it was not asked for. the minimum cost is : C(1.8821)=$637.60.

Example 60:

We have a piece of cardboard that 1s 14 inches by 10 inches and we’re going to cut
out the corners as shown below and fold up the sides to form a box. also shown below.
Determine the height of the box that will give a maximum volume.

hy| i
[
10 - 2h — / 02
. | |
B : 14 — 2
= -
A 14 - 28 "
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In this case we want to maximize the volume. Here is the volume. in terms of / and its first
derivative.

V(h)y=h(14=2h)(10-2h)=140h-48)h* + 4)* V'(h)=140-96h+12h*

Setting the first derivative equal to zero and solving gives the following two critical points,

_12+439
-

h =1.9183, 6.0817

So. knowing that whatever / is it must be in the range 0 = /1 = 5 we can see that the second

critical point is outside this range and so the only critical point that we need to worry about is
1.9183.

Finally. since the volume is defined and continuous on 0 < /7 <5 all we need to do is plug in the
critical points and endpoints into the volume to determine which gives the largest volume. Here
are those function evaluations.

V(0)=0 7 (1.9183)=120.1644 7(5)=0

So. if we take /1 =1.9183 we get a maximum volume.

Example 61: a rectangle is to be inscribed in a semicircle of radius 2. What is the
largest area the rectangle can have, and what are its dimensions?
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Solution Let {.r, v — .r:'_’] be the coordinates of the corner of the rectangle obtained
by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length,
height, and area of the rectangle can then be expressed in terms of the position x of the
lower nght-hand comer:

Length: 2x, Height: v/4 — x%, Area: 2xv4 — x

Motice that the values of x are to be found in the interval 0 = x = 2, where the selected
comer of the rectangle lies.
Our goal 15 to find the absolute maximum value of the function

Alx) = 2xv4 — x°

on the domain [0,2].
The derivative ___i'z_J_’ =4 .
@ o TN
e v/ g
de 4 — -
15 not defined when x = 2 and is equal to zero when l."' - \
: x
. P - -2 —x ] x 2
—+ 2V4 —x =0
V4 — 1
2+ 24— =0
§—4xr" =0
=2
x= = \#'E
Of the two zeros, x = V2 and x = — 2, only x = V2 lies in the interior of A’s domain
and makes the critical-point list. The values of A at the endpoints and at this one critical
point are

Critical point value: A[:VE} =2v2VvV4-2=4
Endpoint values: Ay =0, A2y = 0.

The area has a maximum value of 4 when the rectangle is V4 — x* = /2 units high and
2x = 2V/2 units long. [ |

Example 62 ( Homework) Find the volume of the largest
right circular cone that can be inscribed in a sphere

of radius 3? 1
V=32n/3
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5 Integrals

The Indefinite Integral
An integral can be considered to be an antiderivative. Thus, if we know that the derivative of F(x)
is f(x) [=F'(x)], anintegral of f(x) is F(x). For example, the derivative of %13 is x2, and an

integral of x2 is % x3. Note that we have used the article an. Since the derivative of a constant is

zero, F(x) is arbitrary to the extent of an arbitrary constant. The integral we have defined is known
as an indefinite integral which is usually denoted by the symbol f . Thus, we write

[ﬂ.t] dr = Fix) + C,

where C 1s any arbitrary constant.

Example 79: Evaluate the following indifinite integral Ix“ +3x -9 dx

Solution

The indefinite integral is

_[x4+3x—9 dx=1x5+gx2—9x+c
X

PROPERTIES OF INDEFINITE INTEGRALS

1. A constant factor can be taken outside the integral sign:

/a,f(u:) dr = a] f(x)dzr (a = const).
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2. Integral of the sum or difference of functions (additivity):

/[f(:{:}ig(:z:)] dr = ff(:l:}d:t:i/g(:c) dr. :

Computing Indefinite Integrals

“ cf(x)dx = cj‘f{x] dx

[ kdx=kx + C

. a+1

n — + —
‘xdx — C (n#—1)
'e‘dx=eI+C
.sinxdx=—cosx+{:‘

[ secxdx =tanx + C

secxtan xdx =secx + C

5 dx=tan"'x + C
Joxt+ 1

'Sinhxdx=c03hx + C

| L@ + g(oldx = [ ) dx + [ g(x) ax

r 1
—dx=In|x|+C
x

[ b dx =
. Ink

+ C

cos xdx=sinx + C

csc’xdx = —cotx + C
cscxcotxdx = —cscx + C
" 1

] ﬁdx = Siﬂ_lx + C

coshxdx =sinhx+ C

Example 80: Evaluate each of the following integrals
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(a) 57 -10¢% + 44t
(b) .xs +x % dx

3
(C).) ¥+ 5 ef

(d) .' dv

»

(e) :(W+ : w)( - )dw

(4510 _25% 11552
® 4x 2:;3 +15x I

.
J X

Solution:
@) |57 -10r* +4d

j'5r3—10r‘ +4dr=5(%}r“—m[%}r‘5 +4t+c

5 -
==t*+27 +4t+¢

(b) Ixs +x 2 dx

Jx8+x'8dx=éx9—%x_7+c

(C) 3\/_+x—+Fdx
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3. 7 1 : s, 1 -3
JS X +—+—=dx= | 3x*+Tx" +gx 2 dx

X 6fx

Calculus |
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(e) I(w+%)(4— wz)dw

1 7

I(w+ %)(4—1-1’2)6111?: I4w— W +4w3 —widw

4 10
= 2w’ —% * 1303 —Ew3 +c

45" —2x* +15x2
® I 2 dx

dx = + dx
x J x x x

J 4x1° —2x* +15x7 [ 4x1° ~ 2x*  15x7

'

= | 4x’ —2x+£dx
o/ X

:%xa —x2+151n‘x‘+c

Furtehr examples:

EXAMPLE 1 Find the general indefinite integral
f (10x* — 2 sec’x) dx
SOLUTION Using our convention and Table 1, we have

J(l@x“’ — 2secx)dx = ]U_[x"dx -2 fseczxdx
IS
= ]U? —2tanx + C

=2x> — 2tanx + C

You should check this answer by differentiating it.
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EXAMPLE 2 Evaluate [ <= 45

J sin’@
SOLUTION This indefinite integral isn’t immediately apparent in Table 1, so we use
trigonometric identities to rewrite the function before integrating:

cos 0 cos @
“ sin’f dﬂ_—[( )( sinﬁ')dﬂ

=Jcsc800tﬂa’8=—csc8+£‘ [ |

1
sin @

Substitution Rule for Indefinite Integrals

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives.
But our antidifferentiation formulas don’t tell us how to evaluate integrals such as

m I 2x+/1 + x2 dx

| To find this integral we use the problem-solving strategy of introducing something extra.

@ The Substitution Rule If u = g(x) is a differentiable function whose range is
an interval f and f is continuous on 7, then

[ e g dx = [ ria) du

EXAMPLE 1 Find f x3 cos(x* + 2) dx.

SOLUTION We make the substitution ¥ = x* + 2 because its differential is
du = 4x* dx, which, apart from the constant factor 4, occurs in the integral. Thus, using

x*dx = } du and the Substitution Rule, we have
J-.lri'ms.(.!:4 + 2)dx = I cos u - 5 du = }f‘l‘cos u du
=lsinu+C

=Lsin(x*+2)+ C

Notice that at the final stage we had to return to the original variable x.
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EXAMPLE 2 Evaluate j JV2x T 1dx.

SOLUTION 1 Let u = 2x + 1. Then du = 2 dx, so dx = 3 du. Thus the Substitution
Rule gives

Vax+lde=\|JVu -3du=23|u"du
J Ju sau=s]

1 uﬂ-ﬁ'ﬁ.

2 32

+Cc=u+C
=12+ 12+ C

SOLUTION 2 Another possible substitution is # = /2x + 1. Then

a‘u=% S0 dx=+2x + 1 du = udu
X

(Or observe that u> = 2x + 1, so 2udu = 2 dx.) Therefore

J\mdx=j.u*udu=j.uzdu

uﬂ

=?+c=ah+nm+c I

EXAMPLE 3 Find | Ny e
SOLUTION Letu = 1 — 4x™ Then du = —8xdx, so xdx = _l% du and

[t =]

= (2Wu)+Cc=—3/T-4T+C

EXAMPLE 4 Calculate j e dx.
SOLUTION If we let u = Sx, thendu = 5dx, sodx = ::Tdu. Therefore

jas“dx=%je"du=%£"+c=jles“+c

100



University of Anbar Calculus |

College of Engineering Calculus | Group

Department(s): Civil Eng. 1% Year
Semester | (2019-2020)

NOTE With some experience, you might be able to evaluate integrals like those in
Examples 1-4 without going to the trouble of making an explicit substitution. By recog-
nizing the pattern in Equation 3, where the integrand on the left side is the product of the
derivative of an outer funcition and the derivative of the inner function, we could work

Example 1 as follows:

jxl cos(x* + 2 dx = J. cos(x* + 2) - x dx = ;I{J. cos(x* + 2) - (4x?) dx

=;'; cus(x“—|—2}-di(x“+2]dr=;'[5in{x“+ D+ C
x

Similarly, the solution to Example 4 could be written like this:

d
Iehdr=%fﬂﬁﬁdx=% E(Es‘}dx=§es‘+ C

The following example, however, is more complicated and so an explicit substitution is

advisable.

EXAMPLE 5 Find j' JT ¥ 2% x5dx.

SOLUTION An appropriate substitution becomes more obvious if we factor x” as x* - x.
Letu = 1 + x°. Then du =2xdr,soxdx=%du.!1]sux1 =u— 1,s0x*=(u— 1%

IJI + x? xsdx=J.1,.r"l + x? xt-xdx
=J.J;T{u— 1) - %du=%j~.fu_[uz—2u+])du
='|;I(H5ﬁ — 2u™? + ") du

=G —2- 27 + T 4 C

FA+ -3+ PP+ 350+ PP+ C

EXAMPLE 6 Calculate j tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

tan x dx = sin x dx
J I

COs X
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This suggests that we should substitute ¥ = cos x, since then di = —sin x dx and so
sin x dx = —du:

J.tanxd'x=j sin x dx = —J‘%du

Cos X

= —In|u| + C=—-In|cosx| + C [ |

Since —In|cos x| = In(|cos x|~") = In(1/|cos x|) = In|sec x|, the result of Exam-
ple 6 can also be written as

(5] Im;dx=ln|secx|+c
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6 Inverse Trig Functions &
Hyperbolic Functions
Derivatves of inverse trig functions
Recall the definition of the arcsine function:
R o m ™
¥y =sIn 'x means siny =x and _TE}?%E

Differentiating sin v = x implicitly with respect to x, we obtain

dy dy 1
cosy—=1 or —
T dx

dx cosy

Now cosy =0, since —m/2 =y = 7/2, 50

cosy = /1 — sinly = /1 — x?

dy 1 1
Theref: — = =
cretore dx COs ¥ r — x?

—(sin"'x) = !

dx J1 = x?

The formula for the derivative of the arctangent function is derived in a similar way

If y = tan™'x, then tan y = x. Differentiating this latter equation implicitly with respect
to x, we have

dv
secty X — 1
}dx

dy 1 1 1

dI_SEJCE}"_]‘l‘tEﬂl}?_l"‘Il
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Summary

Derivatives of Inverse Trigonometric Functions

d . _, 1 d . 1
o T ey
d (cos~%) 1 d (sec~1x) 1
—(cos x) = ——F——— —(sec 'x) = —
dx 1 — xt dx X xr—1
1 d 1

—(t -1 — . t_] - _ _
dx{an %) 1+ x° dx (cot™%x) 1 + x°

Differentiate (a) y = = and (b) f(x) = x arctan/x.
SOLUTION
dy d o o d
{a) T dr (sin"'x)"' = —(sin"'x) I (sin”'x)
_ |
 (sin”'P YT = 22
(b) fllx) = Iﬁ(—%x“ul} + arctan.f.?
_Vx
= —2“ T x] + an:tanv‘?

Further examples:

Example 1

Find % given that y = (1 —x?)sin™' x

Here we have a product

A

in~!x.(—2x
ax +sin~ " x.(—2x)

1
1-x2)———
)v’l—xz
=+v1—x2-2xsin"'x
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Example 2
If y = tan~1(2x — 1), find dy
’ dx

This time, it is a function of a function
dy 1 2

— 2=

dx 14+ (2x-1)* 144x2 —-4x+1
B 2 B 1
T2+ 4x2 —4x  2x2 —2x+1

and so on.

Additional Exercise

For each of the following problems differentiate the given function.

1. T(z)=2cos(z)+6cos™ (=)

-

]

. g(t)=csc™'(t)—4cot™ (1)

Cy=5x% —sec” (x)

fw)=sin(w)+ w’ tan™ (w)

h(x) = sin” ()

l1+x

Calculus 1
Calculus | Group
1% Year
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Hyperbolic functions

Certain even and odd combinations of the exponential functions ¢* and e™ arise so fre-
quently in mathematics and its applications that they deserve to be given special names.
In many ways they are analogous to the trigonometric functions, and they have the same
relationship to the hyperbola that the trigonometric functions have to the circle. For this
reason they are collectively called hyperbolic functions and individually called hyper-
bolic sine, hyperbolic cosine, and so on.

Definition of the Hyperbolic Functions
inh et — g™ b 1
sinhx = csch x =
2 sinh x
h et + e7* b 1
coshxy = —— sech x =
2 cosh x
sinh x cosh x
tanh x = coth x = —
cosh x sinh x

Applications to science and engineering occur whenever an entity such as light,

velocity, electricity, or radioactivity is gradually absorbed or extinguished, for the

decay can be represented by hyperbolic functions. The most famous application is

the use of hyperbolic cosine to describe the shape of a hanging wire.

YA
U } - , .
L
— 0 X

A catenary y = ¢ + a cosh(x/a) Idealized ocean wave
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The six basic hyperbolic functions
¥ ¥y =coshx ¥
1 L 1 v = coth x
v = ﬁ 3 - - 3 _ f't 2 I
AT 7T 21 fy=sinhx yv=5N\2Ar fys5 v=1
\ 1/ AN A =
T Y il F T N [T NN Sy T N R L1 |-""|_".:'_“J-'f'r
-3-2-1/k172 3 -3-2-1 | 123 -2 1
R 2 i 2
YT T S ¥=-1
-3F v = coth x
ia) (b} ic)
Hyperbolic sine: Hyperbolic cosine: Hyperbolic tangent:
_ & — g F _eg+ert _sinhxy ¢ — &+
sinh x = 2 cosh x 2 tanh x coshy e +¢°
Hyperbolic cotangent:
cothx = coshxy e’ +e*
y 4 sinhxy ¢ —¢*
2 2
_______ y ____I 1 _\M
P x | 1 1 5 x
-2-10] 1 2 = V 2
v=sechx 1_1.'=|::.sch.r
id) ie)
Hyperbolic secant: Hyperbolic cosecant:
-1 __2 1 2
sech x coshxy e +¢&* Csch-x=5inhx=gz_e—:

Hyperbolic Identities

sinh(—x) = —sinh x
cosh’x — sinh’x = 1
sinh(x + y) = sinh x coshy + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cosh(—x) = cosh x

1 — tanh’x = sech’x
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Evaluation of hyperbolic functions

To evaluate sinh 1-275
Now sinhx = %[f" —e™) . sinh1:275 = %(El-zrs — e 1278y,

We now have to evaluate e!'?’S and ¢~1'275,
Using your calculator, you will find that:

1

1275 _ 1. -1-275 _ = ()
€ =3579 and e 3579 02794
sinh 1:275 = (3-579 — 0:279)
_ %{3-3[}0} — 165

sinh1:275 = 1-65

Example 70:

Prove (a) cosh’x — sinh’x = 1 and (b) 1 — tanh’x = sech’x.

SOLUTION

I o 2 r _ o —x\2
(a) cosh’x — sinh’*x = (u — (i
2 2

(b) We start with the identity proved in part (a):
cosh’x — sinh’x = 1
If we divide both sides by cosh’x, we get
sinh’x 1

cosh®  cosh’x

or 1 — tanh’x = sech’x
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(1] Derivatives of Hyperbolic Functions
4 (inh x) = cosh 4 (esch x) = —csch x coth
Ix (sinh x) = cosh x I (csch x) = —csch x coth x
49 (cosh x) = sinh 4 (sech x) = —sech x tanh
. (cosh x) = sinh x 7y (sechx) = —sech x X
2 (tanh x) = sect? 2 (coth x) = —cscl?
Ir x) = sech’x -y (coth x) = —cschx

Example 71: Differentiate each of the following functions

(@) f(x)=2x"coshx

sinh7
(b) h(t)=
(1) f+1
Solution
(2)
f'(x)=10x" coshx+2x” sinh x
(b)

(r+1)coshz—simnht
(r+l)2

h'(t)=
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