
السادسه	رقم المحاضره
الثالثة	المرحلة
اللاعضوية	اسم المادة
Crystal field theory	اسم المحاضرة باللغة العربية
نظرية المجال البلوري	اسم المحاضرة باللغة الانكليزية

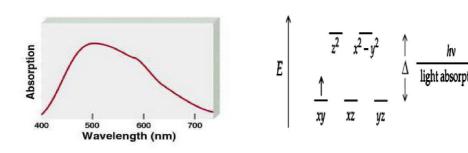
❖ نظریة المجال البلوري :- (Crystal Field Theory (C.F.T))

تفترض هذه النظرية على ان المعقدات الفارية عبارة هن تداخل الكتروستاتيكي (يعني تآصر ايوني) بين الذرة المركزية (تعتبر كشحنة نقطية موجبة تحتوي على اوربيتالات d الخمسة) و الليكاندات المحيطة بها (كشحنة نقطية سالبة تنجذب نحو الشحنات الموجبة و يحدث التآصر ، وقد فسرت هذه النظرية الالوان و السلوك المغناطيسي و الطيفي للمعقدات.

ولفهم نظرية المجال البلوري من الضروري معرفة الاتجاهات الفراغية لاوربيتالات d :-

 d_{x2-y2} من خلال تمثيل اوربيتالات d_{yz} الخمسة نلاحظ أن اوربيتالات d_{yz} روبيتالات d_{yz} تقع مابين المحاور ،أما اوربيتالي و d_{z2} تقع كثافتهما الالكترونية على المحاور لذلك عند اقتراب الليكاندات من اوربيتالات d_{z2} الخمسة نتوقع حصول انفصام d_{z2} أو انحلال و التأثير الدقيق لهذه الظاهرة على طاقات اوربيتالات d_{z2} يعتمد ترتيب الليكاندات حول الايون الفلزي (الشكل الفراغي) .

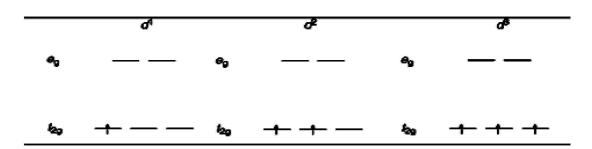
المجال البلوري للمعقدات الثمانية السطوح:- (splitting of d orbitals in octahedral complexes) نائير المجال البلوري للمعقدات الثمانية السطوح:- (splitting of d orbitals in octahedral complexes) لناخذ ذرة مركزية M محاطة بست نقاط مشحونة المتمثلة بالليكاندات وبسبب التداخل الالكتروستاتيكي على الاحداثيات كربر, الالكترونات تكتسب استقرارا نسبياً في الاوربيتالات للمربر, و التي يطلق عليها الاحداثيات ويحصل عكس ذلك لأوربيتالي المربر الذين يتجهان مباشرة نحو الشحنات السالبة و يطلق عليها بأوربيتالي (eg).


نلاحظ أن طاقة اوربيتالي eg ترتفع (1.5 مرة) بقدر انخفاض طاقة اوربيتال t_{2g} ويطلق على المسافة التي تفصل بين مدارات المستوى (e_{g}) ومدارات المستوى (t_{2g}) بالكمية (t_{2g}) بالكمية (t_{2g}) مهما كان مقدارها . ويتغيير قيمته من معقد لأخر معتمده على نوع الليكاندات ونوع الأيون الفلزي وشحنته ونصف قطره .

<u>-: (10Dq) كم (10Dq) عياس مقدار طاقة انفصام المجال البلوري كم (</u>

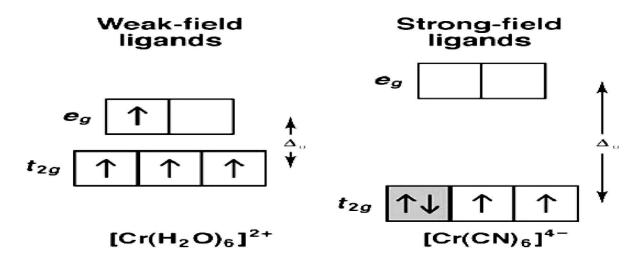
يمكن قياس قيمة المقدار عن طريق معرفة الطاقة اللازمة لإنتقال الكترون من المستوى (t_{2g}) الحالة المستقرة إلى (e_g) الحالة المغروف أن الإلكترونات تميل لأن تستقر في المدارات الأقل في الطاقة وأيضا تميل بأن تكون طليقة ومنفردة حسب قاعدة هوند .

ففي حالة المعقد (d^1) فإن أيون التيتانيوم (Ti^{3+}) وتركيبه الإلكتروني ((d^1)) الذي يحتل فيه الإلكترون في الإلكترون ((d^1)) المستوى ((d^1)) ، فنجد أن عملية انتقال الإلكترون من الحالة المستقرة الى الحالة المثارة

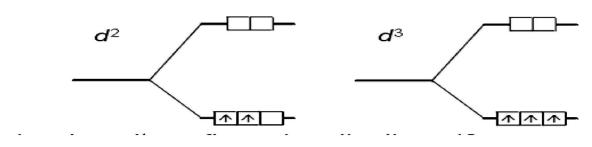

حيث يتحول لون المحلول ايون التيتانيوم (Ti^{3+}) للبنفسجي نتيجة لامتصاص طاقة ضوئية لكي ينتقل هذا الالكترون الوحيد من اوربيتالات t_2 و الى احد اوربيتالات eg و يعطي طيف هذا المعقد حزمة امتصاص عند 20,400 سم - الوحيد من التي تمثل قيمة Δ_0 كما ممثل بالشكل.

تميل الالكترونات في حالة السكون إلى إشغال اوربيتالات t₂g قبل اوربيتالي eg وهذا الملئ التدريجي يعطي استقرارية تضاف إلى استقرار المجال البلوري (Crystal field) تضاف إلى استقرارية الايون الحر وهذه الطاقة الاضافية تدعى طاقة استقرار المجال البلوري Stabilization Energy) ، و تحسب الطاقة الكلية لأستقرارية المجال البلوري من المعادلة :

CFSE =
$$-0.4 \Delta_o n_{t2g} + 0.6 \Delta_o n_{eg}$$


حيث ntze ، ee هي عدد الاليكترونات التي تشغل المدارين و tze ، ee على التوالي.

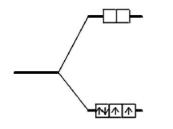
و طاقة أستقرارية المجال البلوري تساوي صفرا في حالة الأيونات ذات التركيب ، d0 ، d0 ، في مجالات كل من الليكاندات الضعيفة و القوية .


وللترتيب الالكتروني d⁴ يظهر احتمالان لهذه الحالة هي حالة: - (1) المجل الضعيف (weak field) حيث الفرق بين طاقة المستويين (t₂g),(eg) صغير اذا ماقورنت بطاقة الازدواج الالكتروني: (t₂g),(eg) صغير اذا ماقورنت بطاقة الازدواج الالكتروني:

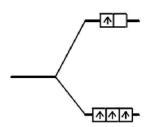
وهي الطاقة اللازمة لازدواج الكترونان في مدار واحد ، فإذا كانت كبيرة فالإلكترون الرابع سيدخل أحد المدارات الموجودة في المستوى (${
m e}_{
m g}$) بدلاً من أن يزدوج في المدارات (${
m t}_{
m 2g}$) . وتكون طاقة الاستقرار للمجال الضعيف هي (${
m t}_{
m 2g}$) بدلاً من أن يزدوج في المدارات (${
m t}_{
m 2g}$) ويكون التوزيع الاليكتروني ${
m t}_{
m 2g}$ ${
m eg}^{1}$) . ويمكن حساب طاقة إستقرار المجال البلوري للتراكيب من ${
m t}_{
m 2g}$) في حالة المجال الضعيف بنفس الطريقة .

حيث الفرق بين طاقة المستويين كبيرة بحيث تكون الطاقة اللازمة لانتقال ($\Delta_0 > P$) على من طاقة الازدواج ($\Delta_0 > P$) لهذا الالكترون يزدوج بدلاً من الانتقال الى اوربيتال eg . eg

أمثلة: اكتب التوزيع الالكتروني للأيونات \mathbf{d}^2 , \mathbf{d}^3 , \mathbf{d}^4 في مجال ليكاندي ثماني الأوجه (octahedral) قوي و ضعيف ، ثم أحسب طاقة استقرار المجال البلوري CFSE ؟



 $d^2: (t_{2g})^2 (e_g)^0$


CFSE =2 x $-0.4\Delta_o$ = $-0.8 \Delta_o$

$$d^3 \, : (t_{2g})^3 (e_g)^0$$

CFSE = $3 \times -0.4 \Delta_o = -1.2 \Delta_o$

 $d^4: (t_{2g})^4 (e_g)^0$ (low spin)

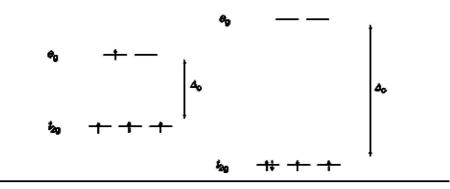
 $d^4: (t_{2g})^3 (e_g)^1$ (high spin)

ويبين الجدول التالي ملخص لتركيب وطاقة استقرار المجال البلوري (CFSE) وعدد الالكترونات المزدوجة للتراكيب من $d^{10} \rightarrow d^{10}$ في حالتي المجال الضعيف و المجال القوي :

Weak Field			Strong Field				
d	configrution	Unpaird	CFSE	d	configrution	Unpair	CFSE
		electron				d	
d¹	t ₂ g ¹ eg ⁰	1	-0.4 Δο	d¹	t ₂ g ¹ eg ⁰	1	-0.4 Δο
d ²	t_2g^2 eg^0	2	-0.8 Δ ₀	d ²	t ₂ g ² eg ⁰	2	-0.8 Δ ₀
d ³	t_2g^3 eg^0	3	-1.2 Δ ₀	d ³	t ₂ g ³ eg ⁰	3	-1.2 Δ ₀
d ⁴	t ₂ g ³ eg ¹	4	-0.6Δο	d ⁴	t ₂ g ⁴ eg ⁰	2	-1.6Δ _o +p3
d ⁵	t ₂ g ³ eg ²	5	0Δο	d ⁵	t ₂ g ⁵ eg ⁰	1	-2Δ ₀ +2p
d ⁶	t ₂ g ⁴ eg ²	4	-0.4Δ ₀ +p	d ⁶	t ₂ g ⁶ eg ⁰	0	-2.4Δ _o +3p
d ⁷	t ₂ g ⁵ eg ²	3	-0.8Δ _o +2p	d ⁷	t ₂ g ⁶ eg ¹	1	-1.8Δ _o +3p
d ⁸	t ₂ g ⁶ eg ²	2	-1.2Δ ₀ +3p	d ⁸	t ₂ g ⁶ eg ²	2	-1.2Δ ₀ +3p
d ⁹	t ₂ g ⁶ eg ³	1	-0.6Δ ₀	d ⁹	t ₂ g ⁶ eg ³	1	-0.6Δ ₀ +3p
d ¹⁰	t ₂ g ⁶ eg ⁴	0	-oΔ _o +5p	d ¹⁰	t ₂ g ⁶ eg ⁴	0	-oΔ ₀ +5p

من الجدول نجد أن في التوزيعات الالكترونية $d^1, d^2, d^3, d^3, d^3, d^3$ متساوية في كلاً من المجال الضعيف و المجال القوي بغض النظر عن قيمة Δ . أما بالنسبة للتوزيع من d^4 إلى d^7 فأننا نستخدم قيمة CFSE بالإضافة إلى قيمة طاقة الازدواج (P) لكي يتم توقع المعقد من النوع برم عالي (High spin) أو برم واطئ (Low spin).

مثـــال :- أن قيمة Δ_0 للايون Δ_0^{-1} [Cr $(H_2O)_6$] تساوي Δ_0^{-1} تساوي (Cr $(H_2O)_6$) تساوي نهذا الايون Δ_0 ماهي طاقة استقرار المجال البلوري لهذا الايون Δ_0 هي: Δ_0 عيد الالكتروني (Δ_0 وطاقة استقرار المجال البلوري بوحدة Δ_0 هي: Δ_0 عيد الالكتروني (Δ_0 عيد المحال البلوري بوحدة التركيب الالكتروني (Δ_0) وطاقة استقرار المجال البلوري بوحدة التركيب الالكتروني (Δ_0)

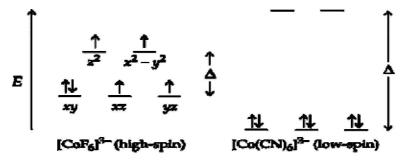

-1.2 x 17400 = -20880 cm-1

وطاقة (CFSE) بوحدة 1- cm

Mn $_{25}$ = [Ar] $4S^2 3d^5$

الحل: Mn³⁺=[Ar]4S⁰3d⁴

تتوزع 4^d كما يلى



High Spin	Low Spin
Weak field	Strong field CFSE = -16Dq + p
CFSE= -6Dq	= -16 x 2100 + 28000
= -6 x 2100= - 12600 cm-1	= -5600 cm-1

لا يوجد ازدواج للالكترونات لان الفرق بين طاقة المجال القوي و الضعيف مساوية الى (7000 cm-1). أي أن المعقد يفضل التواجد بحالة البرم العالى .

نستنتج من الملاحظات والجدول أعلاه أن:

- إن انفصام المجال البلوري يقود الى معرفة الخواص المغناطيسية (معقدات عالية البرم و معقدات الواطئة البرم).
- المعقدات العالية البرم(high spin) هي ذات خواص بارامغناطيسية و المعقدات الواطئة البرم (low spin) ذات خواص دايامغناطيسية .
 - · Weak-field ligands lead to high-spin paramagnetic systems.
 - · Strong-field ligands lead to low-spin diamagnetic systems.

🗷 تأثير المجال الليكاندي للمعقدات الرباعية السطوح :-

Splitting of d orbitals in Tetrahedral Complexes

أحد الاشكال الهندسية التي تتخذها المعقدات ذات التناسق الرباعي هو شكل رباعي السطوح وفي هذا الترتيب تكون الليكاندات اقرب لاوربيتالات t₂g منها لاوربيتالات eg و بذلك فأن اوربيتالات t₂g سوف تعاني تنافراً اشد مما تعانيه اوربيتالات eg و بالتالى سترتفع الطاقة لاوربيتالات t₂g على عكس ماهو عليه في حالة ثماني السطوح ،و لكن لوجود