University of Anbar Engineering College Department of Mechanical Engineering

ME 4309 - Engineering Control and Measurements

(3-3-1-0)

Fourth Stage

Prepared by: Dr. Khaldoon F. Brethee

Chapter 3: Mechanical System Modelling

- Real systems are complicated
- We want to work with simple models
- We need to make some assumptions in our models

Mechanical System Modelling

Linear Mechanical

 $\mathbf{x}(t)$

r(t)

Variables: position, x velocity, v force, f

Damper: f = Bv

Connection rules

Or differentiating:

 $m\frac{d^2v}{dt^2} + b\frac{dv}{dt} + kv = 0$

Example

m

v(t)

 $b\frac{dv}{dt} + kv = 0$ d^2v m

This is a 2nd order linear differential equation.

If we know m, b and k and the initial conditions, we can solve this to find v(t)

Does this model represent anything real?

Electrical System Modelling

Variables: voltage, v current, i

Inductor:

$v = L\frac{di}{dt} \qquad i = \frac{1}{L}\int v \, dt + C$ $v = \frac{1}{L}\int i \, dt \qquad i = C\frac{dv}{dt}$

v = iR

Capacitor:

Resistor:

Connection rules

Kirchoff's Voltage Lawaesee

$\sum v_i = 0$ Around a loop

Kirchoff's Current Law

$\sum i_i = 0$ At a node

 $v_{ind} + v_{res} + v_{cap} = 0$

 $L\frac{di}{dt} + Ri + \frac{1}{C}\int i \, dt = 0$

Or differentiating:

Example

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$$

Example

 $L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$

Once again, we have a 2nd order linear differential equation which could be solved using the usual methods

Compare:

v(t)

 $L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$

Mechanical and Electrical systems can be treated in the same way.