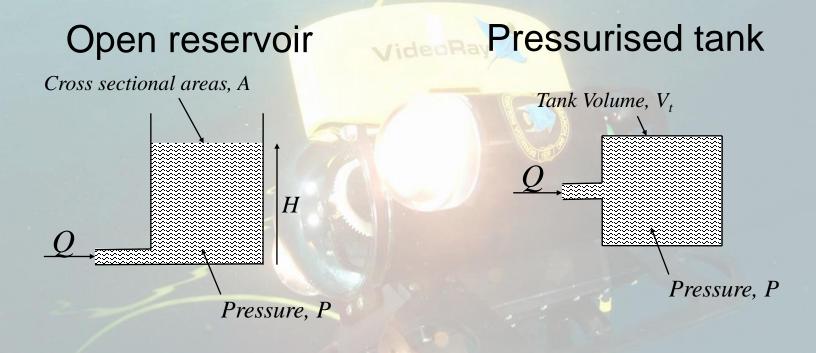

University of Anbar Engineering College Department of Mechanical Engineering

ME 4309 - Engineering Control and Measurements

(3-3-1-0)

Fourth Stage


Prepared by: Dr. Khaldoon F. Brethee

Chapter 4: Fluid Systems and Thermal Systems

Fluid Systems

- Pressure, P (Pa)
- Flow Rate, Q (m³s⁻¹)

Fluid flow store

$$Q = C_f \frac{dP}{dt} \qquad P = \frac{1}{C_f} \int Q dt$$

 C_f – fluid capacitance

Fluid effort store

Cross sectional area, A

 P_1

Q

Velocity.

1

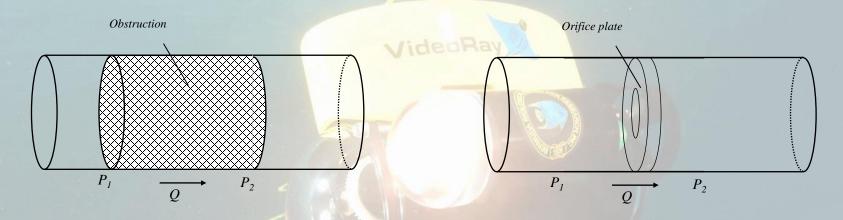
 P_2

Fluid flow in a pipe

Force, $F = A(P_2 - P_1) = AP_{21}$

From Newton's laws: F = ma $F = \rho A l \frac{dv}{dt}$

Q = vA


 $P = \frac{F}{A}$

Fluid density, ρ

$$P_{12} = L_f \frac{dQ}{dt} \qquad \qquad Q = \frac{1}{L_f} \int P_{12} dt$$

Fluid inertance, $L_f = \frac{\rho l}{A}$

Fluid Dissipator

 $P_{12} = R_f Q$

 R_{f} – fluid resistance

In reality, the fluid resistance relationship is highly nonlinear and complex. This is a linear approximation

Fluid system interconnection rules

 Q_{1} Q_{2} Q_{2} $\sum_{j=1}^{N} Q_{j} = 0$

Sum of flows at a junction equals zero (no leaks allowed)

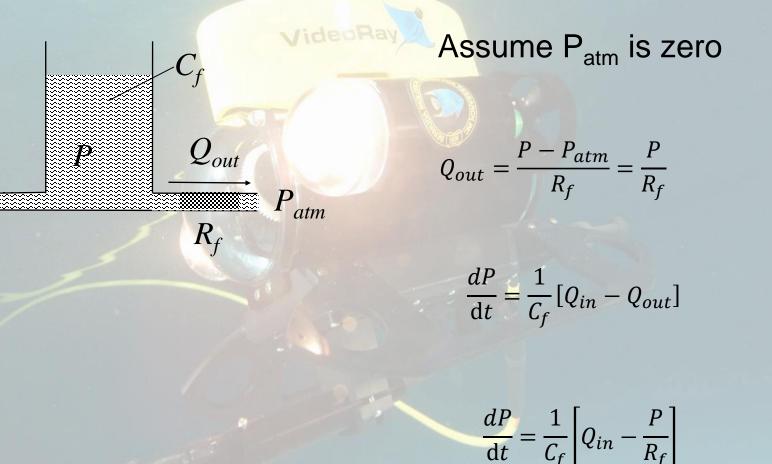
For compressible fluids, sum of all mass flows at a junction equals zero

$$\sum_{j=1}^{N} m_j =$$

Sum of pressure differences around a loop equals zero

 $\sum P_{j,j+1} = 0$

 P_{21}


 $P_{31} = P_{21} + P_{32}$

 \vec{P}_{i}

 P_{32}

Fluid system Example

 Q_{in}

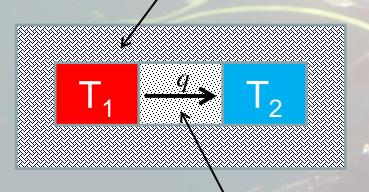
Thermal Systems

- Heat flow rate, q (Watts)
- Temperature, T (Kelvin)
 - Can also use Heat (Joules) but we will stick to temperature

Thermal Flow Store

Heat stored in material

Heat flow, q


 $q = mC_P \frac{dT}{dt}$ $T = \frac{1}{mC_p} \int q \, dt$

m – body mass (kg), C_p – specific heat capacity of material (Jkg⁻¹K⁻¹)

Thermal Dissipator

- Heat loss occurs through conduction, convection
 and radiation
- Convection and radiation are nonlinear so we will stick to conduction

Perfect insulator

$$q = \frac{\sigma_c A}{l} (T_1 - T_2)$$

 σ_c – thermal conductivity A – cross sectional area I – length of the object

Thermal resistance

Interconnection rules

- Sum of heat flows into a thermal junction equals zero
- Sum of temperatures around a loop equals zero

Summary

- To control a system we have to understand its behaviour
- Mathematical models are useful in understanding and predicting system behaviour
- Real systems are very complex

Summary

- We have to simplify them in order to get usable models
 - Linear
 - Single input, single output
 - Time invariant
 - Low order
- Take care that simplifications do not make the model invalid
- Lumped element (mass, spring, damper or RLC) models can be converted into mathematical form fairly easily. Solving the equations can be harder!