University of Anbar Engineering College Department of Mechanical Engineering

ME 4309 - Engineering Control and Measurements

(3-3-1-0)

Fourth Stage

Prepared by: Dr. Khaldoon F. Brethee

Reference:

- 1. Automatic Control Engineering, First Edition 1961, by Francis H. Raven, McGraw Hill.
- 2. Measurement Systems Applications and Design, 5th edition 2003, by E. Doebelin, McGraw Hill.

Chapter 6: PID controller

Table of Content

- 1. Introduction to a PID controller
- 2. P- controller
- 3. PD Controller
- 4. Exercise question (home work).

1. Introduction to PID controller

- a. PID = P + I + D.
- b. P- to make the system response to the input faster than the original.

D - to make the system more stable than the original.

- I to make the system's steady state error close to 0.
- c. Gains K_p , K_i , K_d to tune them for the best contribution from each controller respectively.

2. P-Controller

a. Aim: to make the system response to the input faster than the

original by increasing ω_n .

b. Block diagram in the time domain

Block diagram for the system in the S-domain

- c. Find T(s)
- d. Determine $\omega_n, \zeta, K, e_{ss \text{ (ess will be derived later.)}}$
- e. Summary

3. PD – Controller

- a. Aim: to make the system more stable and response to the input faster than the original by reducing the value of ζ .
- b. Block diagram

- c. Obtain T(s)
- d. Determine $\omega_n, \zeta, K, e_{ss (e_{ss} \text{ will be derived later.})}$
- e. Summary

3. Summary

Performance	Original system	P added to the original	PD added to the original	PID added to the original
Response time ω _n	$\omega_n = \sqrt{\frac{k+1}{M}}$	$\omega_n = \sqrt{\frac{k + K_p}{M}}$	$\omega_n = \sqrt{\frac{k + K_P}{M}}$	The canonical form is not applicable here and ω _n becomes greater.
Stability	$\zeta = \frac{B}{2\sqrt{(k+1)M}}$	$\zeta = \frac{B}{2\sqrt{(k+K_P)M}}$	$\zeta = \frac{B + K_d}{2\sqrt{(k + K_P)M}}$	ζ becomes greater.
Steady state error e _{ss}	$e_{ss} = \frac{k}{1+k}$	$e_{ss} = \frac{k}{k + K_P}$	$e_{ss} = \frac{k}{k + K_P}$	$e_{ss}=0$
Conclusion: when a PID controller is used to control a system (original), the system performance specifications will be significantly improved.				

4. Exercise Question

A PID controller is connected to a control system to control the plant G. The block diagram representing the system in the time domain is shown in the figure below. K_p is the gain of a proportional controller, K_d is the gain of a derivative controller and K_i is the gain of an integral controller. x_d , e, f, f_1 , f_2 , f_3 and x are the variables that change with t in the time domain. x_d is the input and x is the output. Assuming $f_3 = K_i \int edt$ and the Laplace transform of $\int e(t)dt$ is $\frac{1}{s} E(s)$ where E(s) is the Laplace transform of e(t).

- (a) Convert this block diagram for the system in the time domain to the block diagram in the S-domain.
- (b) Obtain the open loop transfer function of the system.
- (c) Find the closed loop transfer function of the system assuming H(s)=1.
- (d) Derive a formula for the steady state error e_{ss} .
- (e) Compare the e_{ss} of the PID regulated system with that of the original system and give your conclusion.